This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055457 #69 Mar 29 2025 04:25:22 %S A055457 1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,3,1,1,1,1,2,1,1,1,1, %T A055457 2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,3,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1, %U A055457 1,2,1,1,1,1,3,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,2,1,1,1,1,3,1,1,1,1,2 %N A055457 5^a(n) exactly divides 5n. Or, 5-adic valuation of 5n. %C A055457 More generally, consider the sequence defined by p^a(n) exactly divides p*n. For p = 3 we have A051064 and for p = 2 we have A001511. %C A055457 The number of powers of 5 that divide n. - _Amiram Eldar_, Mar 29 2025 %H A055457 T. D. Noe, <a href="/A055457/b055457.txt">Table of n, a(n) for n=1..1000</a> %H A055457 Joseph Rosenbaum, <a href="https://doi.org/10.2307/2302451">Elementary Problem E319</a>, American Mathematical Monthly, volume 45, number 10, December 1938, pages 694-696. (The A indices in P at equations 1' and 2' for p=5.) %F A055457 G.f.: Sum_{k>=0} x^(5^k)/(1-x^5^k). - _Ralf Stephan_, Apr 12 2002 %F A055457 Multiplicative with a(p^e) = e+1 if p = 5, 1 otherwise. %F A055457 a(n) = -Sum_{d|n} mu(5d)*tau(n/d). - _Benoit Cloitre_, Jun 21 2007 %F A055457 Dirichlet g.f.: zeta(s)/(1-1/5^s). - _R. J. Mathar_, Feb 09 2011 %F A055457 a(n) = A112765(5n). - _R. J. Mathar_, Jul 17 2012 %F A055457 a(5n) = 1 + a(n). a(5n+k) = 1 for k = 1..4. - _Robert Israel_, Dec 07 2015 %F A055457 G.f. satisfies A(x^5) = A(x) - x/(1-x). - _Robert Israel_, Dec 08 2015 %F A055457 a(n) = A112765(n) + 1. - _Amiram Eldar_, Sep 21 2020 %F A055457 Sum_{k=1..n} a(k) ~ 5*n/4. - _Vaclav Kotesovec_, Sep 21 2020 %F A055457 G.f.: Sum_{i>=1, j>=0} x^(i*5^j). - _Seiichi Manyama_, Mar 23 2025 %e A055457 a(5) = 2 since 5^2 exactly divides 5 times 5; %e A055457 a(25) = 3 since 5^3 exactly divides 5 times 25; %e A055457 a(125) = 4 since 5^4 exactly divides 5 times 125. %p A055457 seq(padic:-ordp(5*n,5), n=1..1000); # _Robert Israel_, Dec 07 2015 %t A055457 max = 1000; s = (1/x)*Sum[x^(5^k)/(1-x^5^k), {k, 0, Log[5, max] // Ceiling }] + O[x]^max; CoefficientList[s, x] (* _Jean-François Alcover_, Dec 04 2015 *) %t A055457 Table[IntegerExponent[n, 5] + 1, {n, 1, 100}] (* _Amiram Eldar_, Sep 21 2020 *) %o A055457 (PARI) a(n)=-sumdiv(n,d,moebius(5*d)*numdiv(n/d)) \\ _Benoit Cloitre_, Jun 21 2007 %o A055457 (PARI) a(n)=valuation(5*n,5) \\ _Anders Hellström_, Dec 04 2015 %o A055457 (Python) %o A055457 def A055457(n): %o A055457 c = 1 %o A055457 while not (a:=divmod(n,5))[1]: %o A055457 c += 1 %o A055457 n = a[0] %o A055457 return c # _Chai Wah Wu_, Feb 28 2025 %Y A055457 Cf. A007949, A112765, A191610 (partial sums). %Y A055457 Cf. A001511, A051064, A115362, A373216, A373217. %K A055457 nonn,mult,easy %O A055457 1,5 %A A055457 _Alford Arnold_, Jun 25 2000