cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055460 Number of primes with odd exponents in the prime power factorization of n!.

This page as a plain text file.
%I A055460 #37 Nov 06 2021 11:07:19
%S A055460 0,1,2,2,3,1,2,3,3,1,2,3,4,4,4,4,5,4,5,4,6,6,7,5,5,5,6,5,6,5,6,7,9,7,
%T A055460 7,7,8,8,8,8,9,10,11,10,9,7,8,7,7,8,10,9,10,8,10,12,14,12,13,11,12,12,
%U A055460 11,11,13,12,13,12,12,13,14,13,14,14,15,14,14,11,12,13,13,13,14,16,16,14
%N A055460 Number of primes with odd exponents in the prime power factorization of n!.
%C A055460 The products of the corresponding primes form A055204.
%C A055460 Also, the number of primes dividing the squarefree part of n! (=A055204(n)).
%C A055460 Also, the number of prime factors in the factorization of n! into distinct terms of A050376. See the references in A241289. - _Vladimir Shevelev_, Apr 16 2014
%D A055460 V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian; MR 2000f: 11097, pp. 3912-3913).
%H A055460 Max Alekseyev, <a href="/A055460/b055460.txt">Table of n, a(n) for n = 1..100000</a>
%H A055460 S. Litsyn and V. S. Shevelev, <a href="http://www.emis.de/journals/INTEGERS/papers/h33/h33.Abstract.html">On factorization of integers with restrictions on the exponent</a>, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36.
%F A055460 a(n) = A001221(A055204(n)). - _Max Alekseyev_, Oct 19 2014
%F A055460 From _Wolfdieter Lang_, Nov 06 2021: (Start)
%F A055460 a(n) = A162642(A000142(n)).
%F A055460 a(n) = A000720(n) - A348841(n), (End)
%e A055460 For n = 100, the exponents of primes in the factorization of n! are {97,48,24,16,9,7,5,5,4,3,3,2,2,2,2,1,1,1,1,1,1,1,1,1,1}, and there are 17 odd values: {97,9,7,5,5,3,3,1,1,1,1,1,1,1,1,1,1}, so a(100) = 17.
%e A055460 The factorization of 6! into distinct terms of A050376 is 5*9*16 with only one prime, so a(6)=1. - _Vladimir Shevelev_, Apr 16 2014
%t A055460 Table[Count[FactorInteger[n!][[All, -1]], m_ /; OddQ@ m] - Boole[n == 1], {n, 100}] (* _Michael De Vlieger_, Feb 05 2017 *)
%o A055460 (PARI) a(n) = omega(core(n!))
%Y A055460 Cf. A000142, A000720, A007913, A008833, A162642, A348841.
%Y A055460 Cf. A249016 (indices of records), A249017 (values of records)
%K A055460 nonn
%O A055460 1,3
%A A055460 _Labos Elemer_, Jun 26 2000
%E A055460 Edited by _Max Alekseyev_, Oct 19 2014