This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055471 #66 Jan 20 2024 04:10:03 %S A055471 1,2,3,4,5,6,7,8,9,10,11,12,15,20,24,30,36,40,50,60,70,80,90,100,101, %T A055471 102,104,105,110,111,112,115,120,128,132,135,140,144,150,175,200,208, %U A055471 210,212,216,220,224,240,250,300,306,312,315,360,384,400,432,480,500 %N A055471 Divisible by the product of its nonzero digits. %C A055471 If n is the term then 10n also is. - _Zak Seidov_, Jun 09 2013 %C A055471 De Koninck and Luca showed that the number of terms of this sequence below x is at least x^0.495 but at most x^0.901 for sufficiently large x. - _Tomohiro Yamada_, Nov 18 2017 %C A055471 This sequence begins with a run of 12 consecutive terms, from 1 to 12. The maximal length of a run of consecutive integer terms is 13. The smallest example of such a run begins with 1111011111000 and ends with 1111011111012 (Diophante link). - _Bernard Schott_, Apr 26 2019 %C A055471 These numbers are called "nombres prodigieux" on the French site Diophante. - _Bernard Schott_, Apr 26 2019 %H A055471 Marius A. Burtea, <a href="/A055471/b055471.txt">Table of n, a(n) for n = 1..11442</a> (terms 1..1000 from Zak Seidov) %H A055471 Jean-Marie De Koninck and Florian Luca, <a href="https://doi.org/10.4171/PM/1777">Positive integers divisible by the product of their nonzero digits</a>, Port. Math. 64 (2007) 75-85. (This proof for upper bounds contains an error. See the paper below) %H A055471 Jean-Marie De Koninck and Florian Luca, <a href="https://doi.org/10.4171/PM/1999">Corrigendum to "Positive integers divisible by the product of their nonzero digits", Portugaliae Math. 64 (2007), 1: 75-85</a>, Port. Math. 74 (2017), 169-170. %H A055471 Diophante, <a href="http://www.diophante.fr/problemes-par-themes/arithmetique-et-algebre/a3-nombres-remarquables/3578-a365-les-nombres-prodigieux">A365, les nombres prodigieux</a>, July 2016. %H A055471 Michael Gohn, Joshua Harrington, Sophia Lebiere, Hani Samamah, Kyla Shappell, and Tony W. H. Wong, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Wong/wong42.html">Arithmetic Progressions of b-Prodigious Numbers</a>, J. Int. Seq., Vol. 25 (2022), Article 22.8.7. %t A055471 Select[Range[5000], IntegerQ[ #/(Times @@ Select[IntegerDigits[ # ], # > 0 &])] &] (* _Alonso del Arte_, Aug 04 2004 *) %o A055471 (MATLAB) m=1; %o A055471 for n=1:1000 %o A055471 v=dec2base(n,10)-'0'; %o A055471 v = v(v~=0); %o A055471 if mod(n,prod(v))==0 %o A055471 sol(m)=n; %o A055471 m=m+1; %o A055471 end %o A055471 end %o A055471 sol % _Marius A. Burtea_, May 07 2019 %o A055471 (Magma) m:=1;sol:=[]; %o A055471 for n in [1..1000] do %o A055471 v:=Intseq(n,10); %o A055471 while &*v eq 0 do; Exclude(~v, 0); end while; %o A055471 if n mod &*(v) eq 0 then ; sol[m]:=n; m:=m+1; end if; %o A055471 end for; %o A055471 sol // _Marius A. Burtea_, May 07 2019 %o A055471 (Python) %o A055471 from math import prod %o A055471 def ok(n): return n > 0 and n%prod([int(d) for d in str(n) if d!='0']) == 0 %o A055471 print(list(filter(ok, range(501)))) # _Michael S. Branicky_, Jul 27 2021 %Y A055471 Superset of A007602. %Y A055471 Cf. A007088. %K A055471 nonn,base %O A055471 1,2 %A A055471 _Robert G. Wilson v_, Jul 05 2000 %E A055471 Corrected by _Patrick De Geest_, Aug 15 2000