cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055530 The recurrence b(k) = 10*b(k-1) + k^n with b(0)=0 has b(k)/10^k converging to a(n)/9^(n+1).

This page as a plain text file.
%I A055530 #9 Sep 04 2017 19:23:46
%S A055530 1,10,110,1410,22110,428610,10027710,274463010,8585407710,
%T A055530 302029998210,11804909261310,507547187120610,23805911748929310,
%U A055530 1209638912316543810,66192799008847310910,3880867089138927234210,242703222549879015746910
%N A055530 The recurrence b(k) = 10*b(k-1) + k^n with b(0)=0 has b(k)/10^k converging to a(n)/9^(n+1).
%D A055530 Alex Walker, On the Growth of Sequences, 2007
%F A055530 a(n) = Sum_{x>=1} (9^(n+1))(x^n) / 10^x. - _Alexander Walker_, Feb 26 2007
%p A055530 a:=n->sum(9^(n+1)*x^n/10^x,x=1..infinity): seq(a(n),n=0..17); # _Emeric Deutsch_, Mar 23 2007
%Y A055530 Cf. A002275, A014824.
%K A055530 frac,nonn
%O A055530 0,2
%A A055530 _Henry Bottomley_, Jul 04 2000
%E A055530 Corrected and extended by _Emeric Deutsch_, Mar 23 2007