cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A055252 Triangle of partial row sums (prs) of triangle A055249.

Original entry on oeis.org

1, 4, 1, 13, 5, 1, 38, 18, 6, 1, 104, 56, 24, 7, 1, 272, 160, 80, 31, 8, 1, 688, 432, 240, 111, 39, 9, 1, 1696, 1120, 672, 351, 150, 48, 10, 1, 4096, 2816, 1792, 1023, 501, 198, 58, 11, 1, 9728, 6912, 4608, 2815, 1524, 699, 256, 69, 12, 1, 22784, 16640, 11520
Offset: 0

Views

Author

Wolfdieter Lang, May 26 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is (((1-z)^2)/(1-2*z)^3)/(1-x*z/(1-z)).
This is the third member of the family of Riordan-type matrices obtained from A007318(n,m) (Pascal's triangle read as lower triangular matrix) by repeated application of the prs-procedure.
The column sequences appear as A049611(n+1), A001793, A001788, A055580, A055581, A055582, A055583 for m=0..6.

Examples

			[0] 1
[1] 4, 1
[2] 13, 5, 1
[3] 38, 18, 6, 1
[4] 104, 56, 24, 7, 1
[5] 272, 160, 80, 31, 8, 1
[6] 688, 432, 240, 111, 39, 9, 1
[7] 1696, 1120, 672, 351, 150, 48, 10, 1
Fourth row polynomial (n = 3): p(3, x) = 38 + 18*x + 6*x^2 + x^3.
		

Crossrefs

Cf. A007318, A055248, A055249. Row sums: A049612(n+1)= A055584(n, 0).

Programs

  • Maple
    T := (n, k) -> binomial(n, k)*hypergeom([3, k - n], [k + 1], -1):
    for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024

Formula

a(n, m)=sum(A055249(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055249(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^2)/(1-2*x)^3)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([3, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024

A331969 T(n, k) = [x^(n-k)] 1/(((1 - 2*x)^k)*(1 - x)^(k + 1)). Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 7, 1, 1, 26, 30, 10, 1, 1, 57, 102, 58, 13, 1, 1, 120, 303, 256, 95, 16, 1, 1, 247, 825, 955, 515, 141, 19, 1, 1, 502, 2116, 3178, 2310, 906, 196, 22, 1, 1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1
Offset: 0

Author

Peter Luschny, Feb 03 2020

Keywords

Comments

The triangle is the matrix inverse of the Riordan square (see A321620) generated by (1 + x - sqrt(1 - 6*x + x^2))/(4*x) (see A172094), where we take the absolute value of the terms.
T(n,k) is the number of evil-avoiding (2413, 3214, 4132, and 4213 avoiding) permutations of length (n+2) that start with 1 and whose inverse has k descents. - Donghyun Kim, Aug 16 2021

Examples

			Triangle starts:
[0] [1]
[1] [1,    1]
[2] [1,    4,    1]
[3] [1,   11,    7,    1]
[4] [1,   26,   30,   10,    1]
[5] [1,   57,  102,   58,   13,    1]
[6] [1,  120,  303,  256,   95,   16,    1]
[7] [1,  247,  825,  955,  515,  141,   19,   1]
[8] [1,  502, 2116, 3178, 2310,  906,  196,  22,  1]
[9] [1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1]
...
Seen as a square array (the triangle is formed by descending antidiagonals):
1,  1,   1,    1,    1,     1,      1,      1,       1, ... [A000012]
1,  4,  11,   26,   57,   120,    247,    502,    1013, ... [A000295]
1,  7,  30,  102,  303,   825,   2116,   5200,   12381, ... [A045889]
1, 10,  58,  256,  955,  3178,   9740,  28064,   77093, ... [A055583]
1, 13,  95,  515, 2310,  9078,  32354, 106970,  333295, ...
1, 16, 141,  906, 4746, 21504,  87374, 326084, 1136799, ...
1, 19, 196, 1456, 8722, 44758, 204204, 849180, 3275931, ...
		

Crossrefs

Row sums A006012, alternating row sums A118434 with different signs, central column A091527.
T(n, 1) = A000295(n+1) for n >= 1, T(n, 2) = A045889(n-2) for n >= 2, T(n, 3) = A055583(n-3) for n >= 3.
Cf. A172094 (inverse up to sign).

Programs

  • Maple
    gf := k -> 1/(((1-2*x)^k)*(1-x)^(k+1)): ser := k -> series(gf(k), x, 32):
    # Prints the triangle:
    seq(lprint(seq(coeff(ser(k), x, n-k), k=0..n)), n=0..6);
    # Prints the square array:
    seq(lprint(seq(coeff(ser(k), x, n), n=0..8)), k=0..6);
  • Mathematica
    (* The function RiordanSquare is defined in A321620; returns the triangle as a lower triangular matrix. *)
    M := RiordanSquare[(1 + x - Sqrt[1 - 6 x + x^2])/(4 x), 9];
    Abs[#] & /@ Inverse[PadRight[M]]
Showing 1-2 of 2 results.