A055584 Triangle of partial row sums (prs) of triangle A055252.
1, 5, 1, 19, 6, 1, 63, 25, 7, 1, 192, 88, 32, 8, 1, 552, 280, 120, 40, 9, 1, 1520, 832, 400, 160, 49, 10, 1, 4048, 2352, 1232, 560, 209, 59, 11, 1, 10496, 6400, 3584, 1792, 769, 268, 70, 12, 1, 26624, 16896, 9984, 5376, 2561, 1037, 338, 82, 13, 1, 66304, 43520
Offset: 0
Examples
[0] 1 [1] 5, 1 [2] 19, 6, 1 [3] 63, 25, 7, 1 [4] 192, 88, 32, 8, 1 [5] 552, 280, 120, 40, 9, 1 [6] 1520, 832, 400, 160, 49, 10, 1 [7] 4048, 2352, 1232, 560, 209, 59, 11, 1 Fourth row polynomial (n=3): p(3, x)= 63 + 25*x + 7*x^2 + x^3.
Programs
-
Maple
T := (n, k) -> binomial(n, k)*hypergeom([4, k - n], [k + 1], -1): for n from 0 to 7 do seq(simplify(T(n, k)), k = 0..n) od; # Peter Luschny, Sep 23 2024
Formula
a(n, m)=sum(A055252(n, k), k=m..n), n >= m >= 0, a(n, m) := 0 if n
Column m recursion: a(n, m)= sum(a(j, m), j=m..n-1)+ A055252(n, m), n >= m >= 0, a(n, m) := 0 if n
G.f. for column m: (((1-x)^3)/(1-2*x)^4)*(x/(1-x))^m, m >= 0.
T(n, k) = binomial(n, k)*hypergeom([4, k - n], [k + 1], -1). - Peter Luschny, Sep 23 2024
Comments