cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055587 Triangle with columns built from row sums of the partial row sums triangles obtained from Pascal's triangle A007318. Essentially A049600 formatted differently.

This page as a plain text file.
%I A055587 #14 Aug 25 2014 10:32:10
%S A055587 1,1,1,1,2,1,1,4,3,1,1,8,8,4,1,1,16,20,13,5,1,1,32,48,38,19,6,1,1,64,
%T A055587 112,104,63,26,7,1,1,128,256,272,192,96,34,8,1,1,256,576,688,552,321,
%U A055587 138,43,9,1,1,512,1280,1696,1520,1002,501,190,53,10,1,1,1024,2816,4096
%N A055587 Triangle with columns built from row sums of the partial row sums triangles obtained from Pascal's triangle A007318. Essentially A049600 formatted differently.
%C A055587 In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as matrix, belongs to the Riordan-group. The G.f. for the row polynomials p(n,x) (increasing powers of x) is 1/((1-z)*(1-x*z*(1-z)/(1-2*z))).
%C A055587 Column m (without leading zeros) is obtained from convolution of A000012 (powers of 1) with m-fold convoluted A011782.
%F A055587 a(n, m)= Am(n, 0) if n >= m >= 0 and a(n, m) := 0 if n<m; i.e. first column of the lower triangular matrix Am := prs^(m)(A007318) with the lower triangular matrix A007318 (Pascal triangle) and prs^(m) is the partial row sums (prs) mapping for triangular matrices applied m times. See e.g. A055584 for m=4.
%F A055587 G.f. for column m: (1/(1-x))*(x*(1-x)/(1-2*x))^m, m >= 0.
%F A055587 T(n, k) = sum_{j=0..n-k} C(n-k, j)*C(k+j-1, k-1). - _Paul D. Hanna_, Jan 14 2004
%e A055587 {1}; {1, 1}; {1, 2, 1}; {1, 4, 3, 1}; {1, 8, 8, 4, 1}; ...
%e A055587 Fourth row polynomial (n=3): p(3,x)= 1+4*x+3*x^2+x^3
%t A055587 t[n_, k_] := Hypergeometric2F1[k, k-n, 1, -1]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 05 2014, after _Paul D. Hanna_ *)
%o A055587 (PARI) {T(n,k) = if( n<0 || k<0, 0, polcoeff( polcoeff( 1 / ((1 - z) * (1 - x*z * (1 - z) / (1 - 2*z) + z * O(z^n) + x * O(x^k))), k), n))}; /* _Michael Somos_, Sep 30 2003 */
%o A055587 (PARI) {T(n,k)=if(k>n||n<0||k<0,0,if(k==0||k==n,1, sum(j=0,n-k,binomial(n-k,j)*binomial(k+j-1,k-1)););)} (Hanna)
%Y A055587 Cf. A049600, column sequences are A000012 (powers of 1), A000079 (powers of 2), A001792, A049611, A049612, A055589, A055852-5 for m=0..9, row sums: A055588.
%K A055587 easy,nonn,tabl
%O A055587 0,5
%A A055587 _Wolfdieter Lang_, May 30 2000