cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055616 Numbers, with an even number of digits, that are the sum of the squares of their two halves (leading zeros allowed only for the second half).

This page as a plain text file.
%I A055616 #32 Dec 20 2024 10:06:51
%S A055616 1233,8833,990100,94122353,1765038125,2584043776,7416043776,
%T A055616 8235038125,9901009901,116788321168,123288328768,876712328768,
%U A055616 883212321168,999900010000,13793103448276,15348303604525,84651703604525,86206903448276,91103202846976,92318202663025
%N A055616 Numbers, with an even number of digits, that are the sum of the squares of their two halves (leading zeros allowed only for the second half).
%C A055616 The sequence is infinite since it contains several infinite subsequences (see A055617, etc.).
%C A055616 If x = A*10^n+B is an element not beginning with 9, then (10^n-A)*10^n+B is another (e.g. 1233 <-> 8833).
%C A055616 Numbers that can be written as n = A*10^d + B with 10^(d-1) <= A < 10^d, 0 <= B < 10^d, and A^2 + B^2 = n. - _Robert Israel_, May 10 2015
%H A055616 Robert Israel, <a href="/A055616/b055616.txt">Table of n, a(n) for n = 1..1000</a>
%e A055616 8833 is ok, since 8833 = 88^2 + 33^2.
%p A055616 dmax:= 8: # to get all entries with at most 2*dmax digits
%p A055616 Res:= NULL:
%p A055616 for d from 2 to dmax  do
%p A055616      cands:= map(t -> subs(t,[x,y]), [isolve(x^2 + y^2 = 10^(2*d)+1)]);
%p A055616      cands:= select(t -> t[1]::even and t[1]>=0 and t[2]>0, cands);
%p A055616      cands:= map(t -> ([(10^d + t[1])/2, (t[2]+1)/2], [(10^d-t[1])/2, (t[2]+1)/2]), cands);
%p A055616      cands:= select(t -> (t[1]>= 10^(d-1) and t[1] < 10^d and t[2] <= 10^d), cands);
%p A055616      Res:= Res, op(map(t -> 10^d*t[1]+t[2], cands));
%p A055616 od:
%p A055616 sort([Res]); # _Robert Israel_, May 10 2015
%t A055616 fQ[n_] := Block[{d = IntegerDigits@ n}, If[OddQ[Length@ d], False, Plus[FromDigits[Take[d, Length[d]/2]]^2, FromDigits[Take[d, -Length[d]/2]]^2]] == n]; Select[Range@ 1000000, fQ] (* _Michael De Vlieger_, May 09 2015 *)
%o A055616 (Python)
%o A055616 def a():
%o A055616   n = 1
%o A055616   while n < 10**6:
%o A055616     st = str(n)
%o A055616     if len(st) % 2 == 0:
%o A055616       s1 = st[:int(len(st)/2)]
%o A055616       s2 = st[int(len(st)/2):int(len(st))]
%o A055616       if int(s1)**2+int(s2)**2 == int(st):
%o A055616         print(n,end=', ')
%o A055616         n += 1
%o A055616       else:
%o A055616         n += 1
%o A055616     else:
%o A055616       n = 10*n
%o A055616 a()
%o A055616 # _Derek Orr_, Jul 08 2014
%o A055616 (PARI) select( {is_A055616(n, L=logint(n,10))=L%2 && n==norml2(divrem(n,10^(L\/2)))}, [1..10^5]) \\ _M. F. Hasler_, Dec 20 2024
%o A055616 for(L=1,oo, for(n=10^L,10^L++, is_A055616(n)&& print1(n", "))) \\ slow beyond 10^6
%Y A055616 Cf. A064942 for the number of solutions, where leading zeros are allowed.
%Y A055616 Cf. A055617, A055618, A055619.
%K A055616 nonn,base
%O A055616 1,1
%A A055616 Ulrich Schimke (ulrschimke(AT)aol.com)
%E A055616 Definition corrected by _Derek Orr_, Jul 09 2014