A055620 Digits of an idempotent 6-adic number.
4, 4, 3, 5, 0, 2, 4, 3, 3, 3, 0, 4, 0, 0, 4, 1, 4, 2, 4, 3, 0, 0, 0, 5, 0, 3, 0, 0, 0, 2, 4, 1, 2, 2, 5, 1, 3, 3, 1, 5, 4, 2, 2, 4, 1, 5, 3, 5, 4, 3, 0, 3, 1, 5, 3, 2, 2, 5, 2, 1, 0, 0, 3, 0, 0, 1, 2, 3, 2, 4, 0, 1, 0, 1, 5, 4, 4, 5, 1, 3, 5, 4, 2, 5, 4, 0, 5, 1, 2, 0, 5, 4, 5, 3, 1, 5, 2, 1, 3, 3, 2, 3, 3, 5, 3
Offset: 0
Examples
(a(0) + a(1)*6 + a(2)*6^2 + a(3)*6^3)^2 == (a(0) + a(1)*6 + a(2)*6^2 + a(3)*6^3) mod 6^4 because 1478656 == 1216 (mod 1296).
References
- V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
Links
- Kenny Lau, Table of n, a(n) for n = 0..9999
- V. deGuerre and R. A. Fairbairn, Automorphic numbers, J. Rec. Math., 1 (No. 3, 1968), 173-179.
Crossrefs
Programs
-
PARI
first(p)=Vecrev(digits(lift(Mod(4,6^p)^3^p), 6)) \\ Charles R Greathouse IV, Nov 01 2022
-
Python
n=10000;res=pow((3**n+1)//2,n,3**n)*2**n for i in range(n):print(i,res%6);res//=6 # Kenny Lau, Jun 09 2018
Formula
If A is the 6-adic number, A == 4^(3^n) mod 6^n. - Robert Dawson, Oct 28 2022
Comments