cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055631 Sum of Euler's totient function phi of distinct primes dividing n.

This page as a plain text file.
%I A055631 #28 Aug 18 2021 21:46:22
%S A055631 0,1,2,1,4,3,6,1,2,5,10,3,12,7,6,1,16,3,18,5,8,11,22,3,4,13,2,7,28,7,
%T A055631 30,1,12,17,10,3,36,19,14,5,40,9,42,11,6,23,46,3,6,5,18,13,52,3,14,7,
%U A055631 20,29,58,7,60,31,8,1,16,13,66,17,24,11,70,3,72,37,6,19,16,15,78,5,2
%N A055631 Sum of Euler's totient function phi of distinct primes dividing n.
%H A055631 G. C. Greubel, <a href="/A055631/b055631.txt">Table of n, a(n) for n = 1..5000</a>
%F A055631 a(n) = Sum_{p divides n} p-1 = A008472(n) - A001221(n).
%F A055631 If n = p^w, a power of prime, then a(n) = p-1; if n = 2p, then a(n) = p = n/2.
%F A055631 Additive with a(p^e) = p-1: a(10) = a(2*5) = a(2)+a(5) = (2-1)+(5-1) = 5; a(28) = a(2^2*7) = a(2^2)+a(7) = 1+6 = 7. - _Vladeta Jovovic_, Oct 23 2001
%F A055631 G.f.: Sum_{k>=1} (prime(k) - 1) * x^prime(k) / (1 - x^prime(k)). - _Ilya Gutkovskiy_, Aug 18 2021
%p A055631 with(numtheory); a := n -> add(f, f = map(phi, factorset(n)));
%p A055631 seq(a(n), n = 1..81);  # _Peter Luschny_, Mar 30 2014
%t A055631 Join[{0},Table[Total[EulerPhi[Transpose[FactorInteger[n]][[1]]]],{n,2,90}]] (* _Harvey P. Dale_, Oct 29 2012 *)
%o A055631 (PARI) A055631(n)=sum(i=1,#n=factor(n)~,n[1,i]-1) \\ _M. F. Hasler_, Nov 10 2016
%Y A055631 Cf. A000010, A001221, A006093, A008472, A053570, A053571, A055632.
%K A055631 nonn
%O A055631 1,3
%A A055631 _Labos Elemer_, Jun 06 2000
%E A055631 Edited by _M. F. Hasler_, Nov 10 2016