This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055666 #12 Oct 26 2013 03:37:05 %S A055666 1,1,2,2,2,1,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2, %T A055666 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, %U A055666 2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 %N A055666 Number of inequivalent Eisenstein-Jacobi primes of successive norms (indexed by A055664). %C A055666 These are the primes in the ring of integers a+b*omega, a and b rational integers, omega = (1+sqrt(-3))/2. %C A055666 Two primes are considered equivalent if they differ by multiplication by a unit (+-1, +-omega, +-omega^2). %D A055666 R. K. Guy, Unsolved Problems in Number Theory, A16. %D A055666 L. W. Reid, The Elements of the Theory of Algebraic Numbers, MacMillan, NY, 1910, see Chap. VI. %H A055666 Jean-François Alcover, <a href="/A055666/b055666.txt">Table of n, a(n) for n = 1..1000</a> %e A055666 There are 6 Eisenstein-Jacobi primes of norm 3, omega-omega^2 times one of the 6 units [ +-1, +-omega, +-omega^2 ] but only one up to equivalence. %t A055666 norms = Join[{3}, Select[Range[2000], (PrimeQ[#] && Mod[#, 6] == 1) || (PrimeQ[Sqrt[#]] && Mod[Sqrt[#], 3] == 2) &]]; r[n_] := Length[Reduce[n == a^2 - a*b + b^2, {a, b}, Integers]]/6; A055666 = r /@ norms (* _Jean-François Alcover_, Oct 24 2013 *) %Y A055666 Cf. A055664-A055668, A055025-A055029. See A004016 and A035019 for theta series of Eisenstein (or hexagonal) lattice. %K A055666 nonn,easy,nice %O A055666 1,3 %A A055666 _N. J. A. Sloane_, Jun 09 2000 %E A055666 More terms from _Franklin T. Adams-Watters_, May 05 2006