This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055684 #42 Feb 16 2025 08:32:43 %S A055684 0,0,1,0,2,1,2,1,4,1,5,2,3,3,7,2,8,3,5,4,10,3,9,5,8,5,13,3,14,7,9,7, %T A055684 11,5,17,8,11,7,19,5,20,9,11,10,22,7,20,9,15,11,25,8,19,11,17,13,28,7, %U A055684 29,14,17,15,23,9,32,15,21,11,34,11,35,17,19,17,29,11 %N A055684 Number of different n-pointed stars. %C A055684 Does not count rotations or reflections. %C A055684 This is also the distinct ways of writing a number as the sum of two positive integers greater than one that are coprimes. - _Lei Zhou_, Mar 19 2014 %C A055684 Equivalently, a(n) is the number of relatively prime 2-part partitions of n without 1's. The Heinz numbers of these partitions are the intersection of A001358 (pairs), A005408 (no 1's), and A000837 (relatively prime) or A302696 (pairwise coprime). - _Gus Wiseman_, Oct 28 2020 %D A055684 Mark A. Herkommer, "Number Theory, A Programmer's Guide," McGraw-Hill, New York, 1999, page 58. %H A055684 Lei Zhou, <a href="/A055684/b055684.txt">Table of n, a(n) for n = 3..10002</a> %H A055684 Alexander Bogomolny, <a href="http://www.cut-the-knot.org/Generalization/PolyStar.shtml">Polygons: formality and intuition.</a>. Includes applet to draw star polygons. %H A055684 Vi Hart, <a href="http://youtu.be/CfJzrmS9UfY">Doodling in Math Class: Stars</a>, Video (2010). %H A055684 Hugo Pfoertner, <a href="/A055684/a055684.pdf">Star-shaped regular polygons up to n=25.</a> %H A055684 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/StarPolygon.html">Star Polygon</a> %F A055684 a(n) = A023022(n) - 1. %F A055684 a(n) + A082023(n) = A140106(n). - _Gus Wiseman_, Oct 28 2020 %e A055684 The first star has five points and is unique. The next is the seven pointed star and it comes in two varieties. %e A055684 From _Gus Wiseman_, Oct 28 2020: (Start) %e A055684 The a(5) = 1 through a(17) = 7 irreducible pairs > 1 (shown as fractions, empty column indicated by dot): %e A055684 2/3 . 2/5 3/5 2/7 3/7 2/9 5/7 2/11 3/11 2/13 3/13 2/15 %e A055684 3/4 4/5 3/8 3/10 5/9 4/11 5/11 3/14 %e A055684 4/7 4/9 7/8 7/9 4/13 %e A055684 5/6 5/8 5/12 %e A055684 6/7 6/11 %e A055684 7/10 %e A055684 8/9 %e A055684 (End) %p A055684 with(numtheory): A055684 := n->(phi(n)-2)/2; seq(A055684(n), n=3..100); %t A055684 Table[(EulerPhi[n]-2)/2, {n, 3, 50}] %t A055684 Table[Length[Select[IntegerPartitions[n,{2}],!MemberQ[#,1]&&CoprimeQ@@#&]],{n,0,30}] (* _Gus Wiseman_, Oct 28 2020 *) %Y A055684 Cf. A023022. %Y A055684 Cf. A053669 smallest skip increment, A102302 skip increment of densest star polygon. %Y A055684 A055684*2 is the ordered version. %Y A055684 A082023 counts the complement (reducible pairs > 1). %Y A055684 A220377, A337563, and A338332 count triples instead of pairs. %Y A055684 A000837 counts relatively prime partitions, with strict case A078374. %Y A055684 A002865 counts partitions with no 1's, with strict case A025147. %Y A055684 A007359 and A337485 count pairwise coprime partitions with no 1's. %Y A055684 A302698 counts relatively prime partitions with no 1's, with strict case A337452. %Y A055684 A327516 counts pairwise coprime partitions, with strict case A305713. %Y A055684 A337450 counts relatively prime compositions with no 1's, with strict case A337451. %Y A055684 Cf. A001399, A101268, A140106, A337461, A337462, A338333. %K A055684 nonn,easy %O A055684 3,5 %A A055684 _Robert G. Wilson v_, Jun 09 2000