cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055786 Numerators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).

This page as a plain text file.
%I A055786 #34 Feb 16 2025 08:32:43
%S A055786 1,1,3,5,35,63,231,143,6435,12155,46189,88179,676039,1300075,5014575,
%T A055786 9694845,100180065,116680311,2268783825,1472719325,34461632205,
%U A055786 67282234305,17534158031,514589420475,8061900920775,5267108601573
%N A055786 Numerators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).
%C A055786 Note that the sequence is not monotonic.
%D A055786 Bronstein-Semendjajew, Taschenbuch der Mathematik, 7th German ed. 1965, ch. 4.2.6
%D A055786 L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
%D A055786 H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3.
%H A055786 T. D. Noe, <a href="/A055786/b055786.txt">Table of n, a(n) for n=0..200</a>
%H A055786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseCosecant.html">Inverse Cosecant</a>.
%H A055786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseCosine.html">Inverse Cosine</a>.
%H A055786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseSecant.html">Inverse Secant</a>.
%H A055786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseSine.html">Inverse Sine</a>.
%H A055786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseHyperbolicCosecant.html">Inverse Hyperbolic Cosecant</a>.
%H A055786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseHyperbolicCosine.html">Inverse Hyperbolic Cosine</a>.
%H A055786 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/InverseHyperbolicSine.html">Inverse Hyperbolic Sine</a>.
%H A055786 Herbert S. Wilf, <a href="https://www2.math.upenn.edu/~wilf/DownldGF.html">Generatingfunctionology</a>, Academic Press, NY, 1994. See p. 54.
%F A055786 a(n) / A052469(n) = A001147(n) / ( A000165(n) *2*n ). E.g., a(6) = 77 = 1*3*5*7*9*11 / gcd( 1*3*5*7*9*11, 2*4*6*8*10*12*12 ).
%F A055786 a(n) = numerator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))). - _Johannes W. Meijer_, Jul 06 2009
%e A055786 arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., which is x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... (A055786/A002595) when reduced to lowest terms.
%e A055786 arccos(x) = Pi/2 - (x + (1/6)*x^3 + (3/40)*x^5 + (5/112)*x^7 + (35/1152)*x^9 + (63/2816)*x^11 + ...) (A055786/A002595).
%e A055786 arccsc(x) = 1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ... (A055786/A002595).
%e A055786 arcsec(x) = Pi/2 -(1/x + 1/(6*x^3) + 3/(40*x^5) + 5/(112*x^7) + 35/(1152*x^9) + 63/(2816*x^11) + ...) (A055786/A002595).
%e A055786 arcsinh(x) = x - (1/6)*x^3 + (3/40)*x^5 - (5/112)*x^7 + (35/1152)*x^9 - (63/2816)*x^11 + ... (A055786/A002595).
%e A055786 i*Pi/2 - arccosh(x) = i*x + (1/6)*i*x^3 + (3/40)*i*x^5 + (5/112)*i*x^7 + (35/1152)*i*x^9 + (63/2816)*i*x^11 + (231/13312)*i*x^13 + (143/10240)*i*x^15 + (6435/557056)*i*x^17 + ... (A055786/A002595).
%e A055786 0, 1, 0, 1/6, 0, 3/40, 0, 5/112, 0, 35/1152, 0, 63/2816, 0, 231/13312, 0, 143/10240, 0, 6435/557056, 0, 12155/1245184, 0, 46189/5505024, 0, ... = A055786/A002595.
%e A055786 a(4) = 35 = 3*5*7*9 / gcd( 3*5*7*9, (2*4*6*8) * (2*4+1))
%p A055786 seq( numer( (n+1)*binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ), n=0..25); # _G. C. Greubel_, Jan 25 2020
%t A055786 Numerator/@Select[CoefficientList[Series[ArcSin[x],{x,0,60}],x], #!=0&]  (* _Harvey P. Dale_, Apr 29 2011 *)
%o A055786 (PARI) vector(25, n, numerator(2*n*binomial(2*n,n)/(4^n*(2*n-1)^2)) ) \\ _G. C. Greubel_, Jan 25 2020
%o A055786 (Magma) [Numerator( (n+1)*Binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ): n in [0..25]]; // _G. C. Greubel_, Jan 25 2020
%o A055786 (Sage) [numerator( (n+1)*binomial(2*n+2,n+1)/(2^(2*n+1)*(2*n+1)^2) ) for n in (0..25)] # _G. C. Greubel_, Jan 25 2020
%Y A055786 Cf. A002595.
%Y A055786 a(n) / A002595(n) = A001147(n) / ( A000165(n) * (2*n+1))
%Y A055786 Cf. A162443 where BG1[-3,n] = (-1)*A002595(n-1)/A055786(n-1) for n >= 1. - _Johannes W. Meijer_, Jul 06 2009
%K A055786 nonn,frac,nice,easy
%O A055786 0,3
%A A055786 _N. J. A. Sloane_, Jul 13 2000
%E A055786 Edited by _Johannes W. Meijer_, Jul 06 2009