This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055801 #23 Jan 05 2025 19:51:36 %S A055801 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,2,2,1,1,1,1,2,3,3,1,1,1,1,2,3,4, %T A055801 3,1,1,1,1,2,3,5,6,4,1,1,1,1,2,3,5,7,7,4,1,1,1,1,2,3,5,8,11,10,5,1,1, %U A055801 1,1,2,3,5,8,12,14,11,5,1,1,1,1,2,3,5,8,13,19,21,15,6,1 %N A055801 Triangle T read by rows: T(i,0)=T(i,i)=1, T(i,j) = Sum_{k=1..floor(n/2)} T(i-2k, j-2k+1) for 1<=j<=i-1, where T(m,n) := 0 if m<0 or n<0. %C A055801 T(i+j,j) is the number of strings (s(1),...,s(m)) of nonnegative integers s(k) such that m<=i+1, s(m)=j and s(k)-s(k-1) is an odd positive integer for k=2,3,...,m. %C A055801 T(i+j,j) is the number of compositions of numbers <=j using up to i parts, each an odd positive integer. %H A055801 G. C. Greubel, <a href="/A055801/b055801.txt">Rows n = 0..100 of triangle, flattened</a> %H A055801 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/40-4/kimberling.pdf">Path-counting and Fibonacci numbers</a>, Fib. Quart. 40 (4) (2002) 328-338, Example 2B. %e A055801 Rows: %e A055801 1 %e A055801 1 1 %e A055801 1 1 1 %e A055801 1 1 1 1 %e A055801 1 1 1 2 1 %e A055801 1 1 1 2 2 1 %e A055801 1 1 1 2 3 3 1 %e A055801 1 1 1 2 3 4 3 1 %e A055801 1 1 1 2 3 5 6 4 1 %e A055801 1 1 1 2 3 5 7 7 4 1 %e A055801 1 1 1 2 3 5 8 11 10 5 1 %e A055801 1 1 1 2 3 5 8 12 14 11 5 1 %e A055801 1 1 1 2 3 5 8 13 19 21 15 6 1 %e A055801 1 1 1 2 3 5 8 13 20 26 25 16 6 1 %e A055801 1 1 1 2 3 5 8 13 21 32 40 36 21 7 1 %e A055801 1 1 1 2 3 5 8 13 21 33 46 51 41 22 7 1 %e A055801 T(9,6) counts the strings 3456, 1236, 1256, 1456, 036, 016, 056. %e A055801 T(9,6) counts the compositions 111, 113, 131, 311, 33, 15, 51. %p A055801 A055801 := proc(i,j) option remember; %p A055801 if j =0 or j = i then 1; %p A055801 elif i < 0 or j < 0 then 0; %p A055801 else add(procname(i-2*k,j-2*k+1),k=1..floor(i/2)) ; %p A055801 end if; %p A055801 end proc: %p A055801 seq(seq(A055801(n,k), k=0..n),n=0..20); # _R. J. Mathar_, Feb 11 2018 %t A055801 T[n_, k_]:= T[n, k]= If[n<0 || k<0, 0, If[k==0 || k==n, 1, Sum[T[n-2*j, k-2*j+1 ], {j, Floor[n/2]}]]]; Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 23 2020 *) %o A055801 (PARI) T(n,k) = if(n<0 || k<0, 0, if(k==0 || k==n, 1, sum(j=1, n\2, T(n-2*j, k-2*j+1)))); %o A055801 for(n=0,15, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Jan 23 2020 %o A055801 (Magma) %o A055801 function T(n,k) %o A055801 if n lt 0 or k lt 0 then return 0; %o A055801 elif k eq 0 or k eq n then return 1; %o A055801 else return (&+[T(n-2*j, k-2*j+1): j in [1..Floor(n/2)]]); %o A055801 end if; return T; end function; %o A055801 [T(n,k): k in [0..n], n in [0..15]]; // _G. C. Greubel_, Jan 23 2020 %o A055801 (Sage) %o A055801 @CachedFunction %o A055801 def T(n, k): %o A055801 if (n<0 or k<0): return 0 %o A055801 elif (k==0 or k==n): return 1 %o A055801 else: return sum(T(n-2*j, k-2*j+1) for j in (1..floor(n/2))) %o A055801 [[T(n, k) for k in (0..n)] for n in (0..15)] # _G. C. Greubel_, Jan 23 2020 %o A055801 (GAP) %o A055801 T:= function(n,k) %o A055801 if n<0 or k<0 then return 0; %o A055801 elif k=0 or k=n then return 1; %o A055801 else return Sum([1..Int(n/2)], j-> T(n-2*j, k-2*j+1)); %o A055801 fi; end; %o A055801 Flat(List([0..15], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Jan 23 2020 %Y A055801 Infinitely many of the columns are (1, 1, 1, 2, 3, 5, 8, ..., Fibonacci numbers) %Y A055801 Essentially a reflected version of A011794. %Y A055801 Cf. A055802, A055803, A055804, A055805, A055806. %K A055801 nonn,tabl,easy %O A055801 0,14 %A A055801 _Clark Kimberling_, May 28 2000