This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055818 #23 Jan 05 2025 19:51:36 %S A055818 1,1,1,1,2,1,1,5,3,1,1,11,9,4,1,1,23,24,14,5,1,1,47,60,43,20,6,1,1,95, %T A055818 144,122,69,27,7,1,1,191,336,328,217,103,35,8,1,1,383,768,848,640,354, %U A055818 146,44,9,1,1,767,1728,2128,1800,1131,543,199,54,10,1 %N A055818 Triangle T read by rows: T(i,j) = R(i-j,j), where R(i,0) = R(0,i) = 1 for i >= 0, R(i,j) = Sum_{h=0..i-1} Sum_{m=0..j} R(h,m) for i >= 1, j >= 1. %H A055818 G. C. Greubel, <a href="/A055818/b055818.txt">Rows n = 0..100 of triangle, flattened</a> %H A055818 Clark Kimberling, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/40-4/kimberling.pdf">Path-counting and Fibonacci numbers</a>, Fib. Quart. 40 (4) (2002) 328-338, Example 3B. %e A055818 Rows begins as: %e A055818 1; %e A055818 1, 1; %e A055818 1, 2, 1; %e A055818 1, 5, 3, 1; %e A055818 1, 11, 9, 4, 1; %e A055818 ... %p A055818 T:= proc(i, j) option remember; %p A055818 if i=0 or j=0 then 1 %p A055818 else add(add(T(h,m), m=0..j), h=0..i-1) %p A055818 fi; end: %p A055818 seq(seq(T(n-k, k), k=0..n), n=0..12); # _G. C. Greubel_, Jan 21 2020 %t A055818 T[i_, j_]:= T[i, j]= If[i==0 || j==0, 1, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 21 2020 *) %o A055818 (PARI) T(i,j) = if(i==0 || j==0, 1, sum(h=0,i-1, sum(m=0,j, T(h,m) ))); %o A055818 for(n=0,12, for(k=0, n, print1(T(n-k,k), ", "))) \\ _G. C. Greubel_, Jan 21 2020 %o A055818 (Magma) %o A055818 function T(i,j) %o A055818 if i eq 0 or j eq 0 then return 1; %o A055818 else return (&+[(&+[T(h,m): m in [0..j]]): h in [0..i-1]]); %o A055818 end if; return T; end function; %o A055818 [T(n-k,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Jan 21 2020 %o A055818 (Sage) %o A055818 @CachedFunction %o A055818 def T(i, j): %o A055818 if (i==0 or j==0): return 1 %o A055818 else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1)) %o A055818 [[T(n-k, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Jan 21 2020 %o A055818 (GAP) %o A055818 T:= function(i,j) %o A055818 if i=0 or j=0 then return 1; %o A055818 else return Sum([0..i-1], h-> Sum([0..j], m-> T(h,m) )); %o A055818 fi; end; %o A055818 Flat(List([0..12], n-> List([0..n], k-> T(n-k,k) ))); # _G. C. Greubel_, Jan 21 2020 %Y A055818 Cf. A055819, A055820, A055821, A055822, A055823, A055824, A055825, A055826, A055827, A055828, A055829. %K A055818 nonn,tabl %O A055818 0,5 %A A055818 _Clark Kimberling_, May 28 2000