This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055833 #16 Sep 08 2022 08:45:01 %S A055833 13,58,162,361,701,1239,2044,3198,4797,6952,9790,13455,18109,23933, %T A055833 31128,39916,50541,63270,78394,96229,117117,141427,169556,201930, %U A055833 239005,281268,329238,383467,444541,513081 %N A055833 T(n,n-6), where T is the array in A055830. %H A055833 G. C. Greubel, <a href="/A055833/b055833.txt">Table of n, a(n) for n = 6..1000</a> %H A055833 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A055833 From _R. J. Mathar_, Mar 13 2016: (Start) %F A055833 G.f.: x^6*(13 -20*x +9*x^2 -x^3)/(1-x)^6. %F A055833 a(n) = (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120. (End) %F A055833 E.g.f.: (3120 + 1560*x + 180*x^2 - 20*x^3 - (3120 - 1560*x + 180*x^2 + 60*x^3 - 20*x^4 - x^5)*exp(x))/120. - _G. C. Greubel_, Jan 21 2020 %p A055833 seq( (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120, n=6..40); # _G. C. Greubel_, Jan 21 2020 %t A055833 Table[(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120, {n,6,40}] (* _G. C. Greubel_, Jan 21 2020 *) %o A055833 (PARI) a(n) = (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120; \\ _G. C. Greubel_, Jan 21 2020 %o A055833 (Magma) [(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120: n in [6..40]]; // _G. C. Greubel_, Jan 21 2020 %o A055833 (Sage) [(n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120 for n in (6..40)] # _G. C. Greubel_, Jan 21 2020 %o A055833 (GAP) List([6..40], n-> (n-5)*(n-4)*(n^3 +19*n^2 +6*n -156)/120 ); # _G. C. Greubel_, Jan 21 2020 %Y A055833 Cf. A055830. %K A055833 nonn,easy %O A055833 6,1 %A A055833 _Clark Kimberling_, May 28 2000