This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055836 #27 Sep 08 2022 08:45:01 %S A055836 2,7,31,145,701,3458,17298,87417,445225,2281565,11750245,60763950, %T A055836 315315014,1641046720,8562466432,44775095601,234594444741, %U A055836 1231249999640,6472043549400,34067089542255,179543120927115 %N A055836 T(2n+2, n), where T is the array in A055830. %H A055836 G. C. Greubel, <a href="/A055836/b055836.txt">Table of n, a(n) for n = 0..1000</a> %F A055836 a(n) = binomial(2*n+1,n) + Sum_{i=ceiling(n/2)..n} binomial(i+1,n-i+1)*binomial(n+i,n). - _Vladimir Kruchinin_, Nov 26 2014 %F A055836 a(n) = C(c+1,n-c+1)*C(n+c,n)*hypergeom([1,c+2,-n+c-1,n+c+1],[c+1,-n/2+c+1/2,-n/2+c+1],-1/4) where c=ceiling(n/2). - _Peter Luschny_, Nov 28 2014 %F A055836 Conjecture: 5*n*(n+1)*(7*n-5)*a(n) - n*(154*n^2+2*n-77)*a(n-1) - 3*(3*n-4)*(7*n+2)*(3*n-2)*a(n-2) = 0. - _R. J. Mathar_, Mar 13 2016 %t A055836 a[n_]:= Binomial[2n+1, n] + Sum[Binomial[i+1, n-i+1] Binomial[n+i, n], {i, Ceiling[n/2], n}]; %t A055836 Array[a, 21, 0] (* _Jean-François Alcover_, Jun 03 2019, after _Vladimir Kruchinin_ *) %o A055836 (Maxima) %o A055836 a(n):=binomial(2*n+1,n)+sum(binomial(i+1,n-i+1)*binomial(n+i,n),i,ceiling((n)/2),n); /* _Vladimir Kruchinin_, Nov 26 2014 */ %o A055836 (Sage) %o A055836 def A055836(n): %o A055836 c = ceil(n/2) %o A055836 b = binomial(c+1,n-c+1)*binomial(n+c,n) %o A055836 h = hypergeometric([1,c+2,-n+c-1,n+c+1],[c+1,-n/2+c+1/2,-n/2+c+1],-1/4) %o A055836 return b*h.simplify_hypergeometric() %o A055836 [A055836(n) for n in range(21)] # _Peter Luschny_, Nov 28 2014 %o A055836 (PARI) {a(n) = binomial(2*n+1,n) + sum(j=ceil(n/2), n, binomial(j+1, n-j+1)*binomial(n+j,n))}; \\ _G. C. Greubel_, Jun 09 2019 %o A055836 (Magma) [Binomial(2*n+1, n) + (&+[Binomial(j+1, n-j+1)*Binomial(n+j, n): j in [Ceiling(n/2)..n]]): n in [0..25]]; // _G. C. Greubel_, Jun 09 2019 %K A055836 nonn %O A055836 0,1 %A A055836 _Clark Kimberling_, May 28 2000