This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055837 #15 Jan 22 2020 09:42:33 %S A055837 3,15,73,361,1806,9122,46425,237721,1223365,6321965,32784830, %T A055837 170528190,889291352,4648068192,24342384337,127707864849,671047979300, %U A055837 3531026714720,18603737992455,98129545962855,518149580437560 %N A055837 T(2n+3,n), where T is the array in A055830. %H A055837 G. C. Greubel, <a href="/A055837/b055837.txt">Table of n, a(n) for n = 0..500</a> %F A055837 Conjecture: 5*n*(n+2)*(11*n-4)*a(n) +(-242*n^3-330*n^2+29*n+42)*a(n-1) -3*(3*n-1)*(11*n+7)*(3*n-2)*a(n-2)=0. - _R. J. Mathar_, Mar 13 2016 %p A055837 with(combinat); %p A055837 T:= proc(n, k) option remember; %p A055837 if k<0 or k>n then 0 %p A055837 elif k=0 then fibonacci(n+1) %p A055837 elif n=1 and k=1 then 0 %p A055837 else T(n-1, k-1) + T(n-1, k) + T(n-2, k) %p A055837 fi; end: %p A055837 seq(T(2*n+3, n), n=0..30); # _G. C. Greubel_, Jan 21 2020 %t A055837 T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, Fibonacci[n+1], If[n==1 && k==1, 0, T[n-1, k-1] + T[n-1, k] + T[n-2, k]]]]; Table[T[2*n+3, n], {n,0,30}] (* _G. C. Greubel_, Jan 21 2020 *) %o A055837 (Sage) %o A055837 @CachedFunction %o A055837 def T(n, k): %o A055837 if (k<0 or k>n): return 0 %o A055837 elif (k==0): return fibonacci(n+1) %o A055837 elif (n==1 and k==1): return 0 %o A055837 else: return T(n-1, k-1) + T(n-1, k) + T(n-2, k) %o A055837 [T(2*n+3, n) for n in (0..30)] # _G. C. Greubel_, Jan 21 2020 %Y A055837 Cf. A055830. %K A055837 nonn %O A055837 0,1 %A A055837 _Clark Kimberling_, May 28 2000