cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055845 a(n) = 4*a(n-1) - a(n-2) with a(0)=1, a(1)=8.

This page as a plain text file.
%I A055845 #27 Sep 08 2022 08:45:01
%S A055845 1,8,31,116,433,1616,6031,22508,84001,313496,1169983,4366436,16295761,
%T A055845 60816608,226970671,847066076,3161293633,11798108456,44031140191,
%U A055845 164326452308,613274669041,2288772223856
%N A055845 a(n) = 4*a(n-1) - a(n-2) with a(0)=1, a(1)=8.
%D A055845 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%H A055845 G. C. Greubel, <a href="/A055845/b055845.txt">Table of n, a(n) for n = 0..1000</a>
%H A055845 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A055845 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-1).
%F A055845 a(n) = (8*((2+sqrt(3))^n - (2-sqrt(3))^n) - ((2+sqrt(3))^(n-1) - (2-sqrt(3))^(n-1)))/(2*sqrt(3)).
%F A055845 G.f.: (1+4*x)/(1-4*x+x^2).
%F A055845 a(n)^2 = 3*A144721(n)^2 - 11. - _Sture Sjöstedt_, Nov 30 2011
%F A055845 From _G. C. Greubel_, Jan 20 2020: (Start)
%F A055845 a(n) = ChebyshevU(n,2) + 4*ChebyshevU(n-1,2).
%F A055845 E.g.f.: exp(2*x)*( cosh(sqrt(3)*x) + 2*sqrt(3)*sinh(sqrt(3)*x) ). (End)
%p A055845 seq( simplify(ChebyshevU(n,2) + 4*ChebyshevU(n-1,2)), n=0..30); # _G. C. Greubel_, Jan 20 2020
%t A055845 LinearRecurrence[{4,-1}, {1,8}, 30]  (* _Sture Sjöstedt_, Nov 30 2011 *)
%t A055845 Table[ChebyshevU[n, 2] + 4*ChebyshevU[n-1, 2], {n,0,30}] (* _G. C. Greubel_, Jan 20 2020 *)
%o A055845 (PARI) a(n) = polchebyshev(n,2,2) + 4*polchebyshev(n-1,2,2); \\ _G. C. Greubel_, Jan 20 2020
%o A055845 (Magma) I:=[1,8]; [n le 2 select I[n] else 4*Self(n-1) - Self(n-2): n in [1..30]]; // _G. C. Greubel_, Jan 20 2020
%o A055845 (Sage) [chebyshev_U(n,2) +4*chebyshev_U(n-1,2) for n in (0..30)] # _G. C. Greubel_, Jan 20 2020
%o A055845 (GAP) a:=[1,8];; for n in [3..30] do a[n]:=4*a[n-1]-a[n-2]; od; a; # _G. C. Greubel_, Jan 20 2020
%Y A055845 Cf. A054485.
%K A055845 easy,nonn
%O A055845 0,2
%A A055845 _Barry E. Williams_, May 31 2000