This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055847 #24 Jul 02 2025 16:02:00 %S A055847 1,6,49,392,3136,25088,200704,1605632,12845056,102760448,822083584, %T A055847 6576668672,52613349376,420906795008,3367254360064,26938034880512, %U A055847 215504279044096,1724034232352768,13792273858822144,110338190870577152 %N A055847 a(0)=1, a(1)=6, a(n)=49*8^(n-2) if n>=2. %C A055847 For n>=2, a(n) is equal to the number of functions f:{1,2,...,n}->{1,2,3,4,5,6,7,8} such that for fixed, different x_1, x_2 in {1,2,...,n} and fixed y_1, y_2 in {1,2,3,4,5,6,7,8} we have f(x_1)<>y_1 and f(x_2)<> y_2. - _Milan Janjic_, Apr 19 2007 %C A055847 a(n) is the number of generalized compositions of n when there are 7*i-1 different types of i, (i=1,2,...). - _Milan Janjic_, Aug 26 2010 %D A055847 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. %H A055847 Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a> %H A055847 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (8). %F A055847 a(n) = 8*a(n-1) + (-1)^n*C(2, 2-n). %F A055847 G.f.: (1-x)^2/(1-8*x). %F A055847 a(n) = sum_{k, 0<=k<=n} A201780(n,k)*6^k. - _Philippe Deléham_, Dec 05 2011 %t A055847 Join[{1,6},NestList[8#&,49,20]] (* _Harvey P. Dale_, Dec 08 2013 *) %Y A055847 First differences of A055274. Cf. A001018. %K A055847 nonn,easy %O A055847 0,2 %A A055847 _Barry E. Williams_, Jun 03 2000 %E A055847 More terms from _James Sellers_, Jun 05 2000