This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055849 #50 Sep 08 2022 08:45:01 %S A055849 1,9,26,69,181,474,1241,3249,8506,22269,58301,152634,399601,1046169, %T A055849 2738906,7170549,18772741,49147674,128670281,336863169,881919226, %U A055849 2308894509,6044764301,15825398394,41431430881,108468894249 %N A055849 a(n) = 3*a(n-1) - a(n-2) with a(0)=1, a(1)=9. %D A055849 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. %H A055849 G. C. Greubel, <a href="/A055849/b055849.txt">Table of n, a(n) for n = 0..1000</a> %H A055849 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A055849 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-1). %F A055849 a(n) = (9*(((3+sqrt(5))/2)^n - ((3-sqrt(5))/2)^n) - (((3+sqrt(5))/2)^(n-1) - ((3-sqrt(5))/2)^(n-1)))/sqrt(5). %F A055849 G.f.: (1+6*x)/(1-3*x+x^2). %F A055849 a(n) = L(2*n-1) + 2*L(2*n+1), where L(n) is the n-th Lucas number. - _Rigoberto Florez_, Dec 24 2018 %F A055849 a(n) = Fibonacci(2*n+2) + 6*Fibonacci(2*n). - _G. C. Greubel_, Jan 16 2020 %p A055849 with(combinat); seq( fibonacci(2*n+2) + 6*fibonacci(2*n), n=0..30); # _G. C. Greubel_, Jan 16 2020 %t A055849 LinearRecurrence[{3,-1},{1,9},30] (* _Harvey P. Dale_, Jan 20 2013 *) %t A055849 Table[LucasL[2n-1]+2LucasL[2n+1], {n,0,30}] (* _Rigoberto Florez_, Dec 24 2018 *) %o A055849 (PARI) vector(31, n, fibonacci(2*n) +6*fibonacci(2*n-2) ) \\ _G. C. Greubel_, Jan 16 2020 %o A055849 (Magma) [Lucas(2*n-1) + 2*Lucas(2*n+1): n in [0..30]]; // _G. C. Greubel_, Jan 16 2020 %o A055849 (Magma) R<x>:=PowerSeriesRing(Integers(), 26); Coefficients(R!( (1+6*x)/(1-3*x+x^2) )); // _Marius A. Burtea_, Jan 16 2020 %o A055849 (Sage) [fibonacci(2*n+2) + 6*fibonacci(2*n) for n in (0..30)] # _G. C. Greubel_, Jan 16 2020 %o A055849 (GAP) List([0..30], n-> Lucas(1,-1,2*n-1)[2] + 2*Lucas(1,-1,2*n+1)[2] ); # _G. C. Greubel_, Jan 16 2020 %Y A055849 Cf. A000032, A000045. %K A055849 easy,nonn %O A055849 0,2 %A A055849 _Barry E. Williams_, Jun 03 2000