A055851 a(n) and floor(a(n)/6) are both squares; i.e., squares that remain squares when written in base 6 and last digit is removed.
0, 1, 4, 9, 25, 100, 729, 2401, 9604, 71289, 235225, 940900, 6985449, 23049601, 92198404, 684502569, 2258625625, 9034502500, 67074266169, 221322261601, 885289046404, 6572593581849, 21687323011225, 86749292044900
Offset: 1
Examples
a(5) = 100 because 100 = 10^2 = 244 base 6 and 24 base 6 = 16 = 4^2.
Links
- M. F. Hasler, Truncated squares, OEIS wiki, Jan 16 2012
- Index to sequences related to truncating digits of squares.
Crossrefs
Cf. A023110.
Programs
-
PARI
b=6;for(n=1,2e9,issquare(n^2\b) & print1(n^2,",")) \\ M. F. Hasler, Jan 15 2012
Formula
a(n) = A204518(n)^2. - M. F. Hasler, Jan 15 2012
Empirical g.f.: -x^2*(9*x^8+100*x^7+25*x^6-162*x^5-296*x^4-74*x^3+9*x^2+4*x+1) / ((x-1)*(x^2+x+1)*(x^6-98*x^3+1)). - Colin Barker, Sep 15 2014
Extensions
More terms added and offset changed to 1 by M. F. Hasler, Jan 16 2012
Comments