This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055852 #11 Sep 08 2022 08:45:01 %S A055852 0,1,7,34,138,501,1683,5336,16172,47264,134048,370688,1003136,2664192, %T A055852 6960384,17922048,45552640,114442240,284508160,700579840,1710161920, %U A055852 4141416448,9955639296,23770693632,56400543744,133041225728 %N A055852 Convolution of A055589 with A011782. %C A055852 Seventh column of triangle A055587. %C A055852 T(n,5) of array T as in A049600. %H A055852 G. C. Greubel, <a href="/A055852/b055852.txt">Table of n, a(n) for n = 0..1000</a> %H A055852 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (12,-60,160,-240,192,-64). %F A055852 a(n) = T(n, 5) = A055587(n+5, 6). %F A055852 G.f.: x*(1-x)^5/(1-2*x)^6. %p A055852 seq(coeff(series(x*(1-x)^5/(1-2*x)^6, x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Jan 16 2020 %t A055852 CoefficientList[Series[x*(1-x)^5/(1-2*x)^6, {x,0,30}], x] (* _G. C. Greubel_, Jan 16 2020 *) %o A055852 (PARI) my(x='x+O('x^30)); concat([0], Vec(x*(1-x)^5/(1-2*x)^6)) \\ _G. C. Greubel_, Jan 16 2020 %o A055852 (Magma) R<x>:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x*(1-x)^5/(1-2*x)^6 )); // _G. C. Greubel_, Jan 16 2020 %o A055852 (Sage) %o A055852 def A055852_list(prec): %o A055852 P.<x> = PowerSeriesRing(ZZ, prec) %o A055852 return P( x*(1-x)^5/(1-2*x)^6 ).list() %o A055852 A055852_list(30) # _G. C. Greubel_, Jan 16 2020 %o A055852 (GAP) a:=[1,7,34,138,501,1683];; for n in [7..30] do a[n]:=12*a[n-1] -60*a[n-2] +160*a[n-3] -240*a[n-4] +192*a[n-5] -64*a[n-6]; od; Concatenation([0], a); # _G. C. Greubel_, Jan 16 2020 %Y A055852 Cf. A011782, A049600, A055587, A055589. %K A055852 nonn,easy %O A055852 0,3 %A A055852 _Wolfdieter Lang_ May 30 2000