A055860 a(n) = A000169(n+1) if n > 0; a(0) = 0.
0, 2, 9, 64, 625, 7776, 117649, 2097152, 43046721, 1000000000, 25937424601, 743008370688, 23298085122481, 793714773254144, 29192926025390625, 1152921504606846976, 48661191875666868481, 2185911559738696531968
Offset: 0
Links
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 67
Formula
a(0) = 0; for n >= 1, a(n) = (n+1)^n.
E.g.f.: -W(-x)/((1+W(-x))*x) - 1 = -(d/dx)W(x) - 1, W(x) principal branch of Lambert's function.