This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055890 #17 Dec 31 2018 14:15:06 %S A055890 1,1,3,6,14,28,68,148,358,845,2061,5018,12458,30922,77557,195154, %T A055890 493809,1253614,3195210,8166758,20935826,53799072,138571332,357647566, %U A055890 924846881,2395702829,6215779536,16150985916,42024260088,109485000778 %N A055890 CIK transform of partition numbers A000041. %H A055890 C. G. Bower, <a href="/transforms2.html">Transforms (2)</a> %H A055890 P. Flajolet and M. Soria, <a href="http://algo.inria.fr/flajolet/Publications/cycle2.ps.gz">The Cycle Construction</a>. In SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60. %H A055890 P. Flajolet and M. Soria, <a href="/A055890/a055890.pdf">The Cycle Construction</a>. [pdf file] %t A055890 nmax = 30; %t A055890 f[x_] = 1/Product[1 - x^n, {n, 1, nmax}] - 1; %t A055890 gf = 1+Sum[(EulerPhi[n]/n)*Log[1/(1 - f[x^n])] + O[x]^nmax, {n, 1, nmax}]; %t A055890 CoefficientList[gf, x] (* _Jean-François Alcover_, Jul 29 2018, from PARI *) %o A055890 (PARI) %o A055890 N = 66; x = 'x + O('x^N); %o A055890 f(x) = 1 / prod(n=1,N, 1-x^n ) - 1; \\ A055890 %o A055890 gf = 1 + sum(n=1,N, eulerphi(n)/n*log(1/(1-f(x^n))) ); %o A055890 v = Vec(gf) %o A055890 /* _Joerg Arndt_, Jan 21 2013 */ %Y A055890 Cf. A055889, A000142. %K A055890 nonn %O A055890 0,3 %A A055890 _Christian G. Bower_, Jun 09 2000