A055894 Inverse Moebius transform of Pascal's triangle A007318.
1, 1, 1, 2, 2, 2, 2, 3, 3, 2, 3, 4, 8, 4, 3, 2, 5, 10, 10, 5, 2, 4, 6, 18, 22, 18, 6, 4, 2, 7, 21, 35, 35, 21, 7, 2, 4, 8, 32, 56, 78, 56, 32, 8, 4, 3, 9, 36, 87, 126, 126, 87, 36, 9, 3, 4, 10, 50, 120, 220, 254, 220, 120, 50, 10, 4, 2, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11
Offset: 0
Examples
Triangle starts: [0] 1; [1] 1, 1; [2] 2, 2, 2; [3] 2, 3, 3, 2; [4] 3, 4, 8, 4, 3; [5] 2, 5, 10, 10, 5, 2; [6] 4, 6, 18, 22, 18, 6, 4; [7] 2, 7, 21, 35, 35, 21, 7, 2; [8] 4, 8, 32, 56, 78, 56, 32, 8, 4; [9] 3, 9, 36, 87, 126, 126, 87, 36, 9, 3; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 101 rows, flattened
- N. J. A. Sloane, Transforms
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Mathematica
T[n_, k_] := DivisorSum[GCD[k, n], Binomial[n/#, k/#] &]; T[0, 0] = 1; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 02 2015 *)
-
PARI
T(n,k) = if(n<=0, n==0, sumdiv(gcd(n,k), d, binomial(n/d,k/d) ) ); /* print triangle: */ { for (n=0, 17, for (k=0, n, print1(T(n,k),", "); ); print(); ); } /* Joerg Arndt, Oct 21 2012 */