cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A055932 Numbers all of whose prime divisors are consecutive primes starting at 2.

This page as a plain text file.
%I A055932 #103 Aug 07 2025 20:25:53
%S A055932 1,2,4,6,8,12,16,18,24,30,32,36,48,54,60,64,72,90,96,108,120,128,144,
%T A055932 150,162,180,192,210,216,240,256,270,288,300,324,360,384,420,432,450,
%U A055932 480,486,512,540,576,600,630,648,720,750,768,810,840,864,900,960,972
%N A055932 Numbers all of whose prime divisors are consecutive primes starting at 2.
%C A055932 a(n) is also the sorted version of A057335 which is generated recursively using the formula A057335 = A057334 * A057335(repeated), where A057334 = A000040(A000120). - _Alford Arnold_, Nov 11 2001
%C A055932 Squarefree kernels of these numbers are primorial numbers. See A080404. - _Labos Elemer_, Mar 19 2003
%C A055932 If u and v are terms then so is u*v. - _Reinhard Zumkeller_, Nov 24 2004
%C A055932 Except for the initial value a(1) = 1, a(n) gives the canonical primal code of the n-th finite sequence of positive integers, where n = (prime_1)^c_1 * ... * (prime_k)^c_k is the code for the finite sequence c_1, ..., c_k. See examples of primal codes at A106177. - _Jon Awbrey_, Jun 22 2005
%C A055932 From _Daniel Forgues_, Jan 24 2011: (Start)
%C A055932 Least integer, in increasing order, of each ordered prime signature.
%C A055932 The least integer of each ordered prime signature are the smallest numbers with a given tuple of exponents of prime factors.
%C A055932 The ordered prime signature (where the order of exponents matters) of n corresponds to a given composition of Omega(n), as opposed to the prime signature of n, which corresponds to a given partition of Omega(n). (End)
%C A055932 Except for the initial entry 1, the entries of the sequence are the Heinz numbers of all partitions that contain all parts 1,2,...,k, where k is the largest part. The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by _Alois P. Heinz_ in A215366 as an "encoding" of a partition). For example, for the partition [1,1,2,4,10] the Heinz number is 2*2*3*7*29 = 2436. The number 150 (= 2*3*5*5) is in the sequence because it is the Heinz number of the partition [1,2,3,3]. - _Emeric Deutsch_, May 22 2015
%C A055932 Numbers n such that A053669(n) > A006530(n). - _Anthony Browne_, Jun 06 2016
%C A055932 From _David W. Wilson_, Dec 28 2018: (Start)
%C A055932 Numbers n such that for primes p > q, p | n => q | n.
%C A055932 Numbers n such that prime p | n => A034386(p) | n. (End)
%H A055932 Michael De Vlieger, <a href="/A055932/b055932.txt">Table of n, a(n) for n = 1..10000</a>, first 1001 terms from Franklin T. Adams-Watters.
%H A055932 Jon Awbrey, <a href="https://oeis.org/wiki/Riffs_and_Rotes">Riffs and Rotes</a>.
%H A055932 Michael De Vlieger, <a href="/A055932/a055932.txt">Extended table of n, a(n) for n = 1..100000</a>.
%H A055932 Robert Vajda, <a href="http://ceur-ws.org/Vol-2650/paper43.pdf">Computational Exploration of the Degree Sequence of the Malyshev Polynomials</a>, Proceedings of the 11th International Conference on Applied Informatics (Eger, Hungary, 2020).
%H A055932 <a href="/index/Pri#prime_signature">Index entries for sequences related to prime signature</a>.
%F A055932 Sum_{n>=1} 1/a(n) = Sum_{n>=0} 1/A005867(n) = 2.648101... (A345974). - _Amiram Eldar_, Jun 26 2025
%e A055932 60 is included because 60 = 2^2 * 3 * 5 and 2, 3 and 5 are consecutive primes beginning at 2.
%e A055932 Sequence A057335 begins
%e A055932 1..2..4..6..8..12..18..30..16..24..36..60..54..90..150..210... which is equal to
%e A055932 1..2..2..3..2...3...3...5...2...3...3...5...3...5....5....7... times
%e A055932 1..1..2..2..4...4...6...6...8...8..12..12..18..18...30...30...
%p A055932 isA055932 := proc(n)
%p A055932     local s,p ;
%p A055932     s := numtheory[factorset](n) ;
%p A055932     for p in s do
%p A055932         if p > 2 and not prevprime(p)  in s then
%p A055932             return false;
%p A055932         end if;
%p A055932     end do:
%p A055932     true ;
%p A055932 end proc:
%p A055932 for n from 2 to 100 do
%p A055932     if isA055932(n) then
%p A055932         printf("%d,",n) ;
%p A055932     end if;
%p A055932 end do: # _R. J. Mathar_, Oct 02 2012
%t A055932 Select[Range[1000], #==1||FactorInteger[ # ][[ -1, 1]]==Prime[Length[FactorInteger[ # ]]]&]
%t A055932 cpQ[n_]:=Module[{f=Transpose[FactorInteger[n]][[1]]},f=={1}||f==Prime[ Range[Length[f]]]]; Select[Range[1000],cpQ] (* _Harvey P. Dale_, Jul 14 2012 *)
%o A055932 (PARI) is(n)=my(f=factor(n)[,1]~);f==primes(#f) \\ _Charles R Greathouse IV_, Aug 22 2011
%o A055932 (PARI) list(lim,p=2)=my(v=[1],q=nextprime(p+1),t=1);while((t*=p)<=lim,v=concat(v,t*list(lim\t,q))); vecsort(v) \\ _Charles R Greathouse IV_, Oct 02 2012
%o A055932 (Magma) [1] cat [k:k in[2..1000 by 2]|forall{i:i in [1..#PrimeDivisors(k)-1]|NextPrime(pd[i]) in pd where pd is PrimeDivisors(k)}]; // _Marius A. Burtea_, Feb 01 2020
%o A055932 (Python)
%o A055932 from itertools import count, islice
%o A055932 from sympy import primepi, primefactors
%o A055932 def A055932_gen(startvalue=1): # generator of terms >= startvalue
%o A055932     for k in count(max(startvalue,1)):
%o A055932         p = list(map(primepi,primefactors(k)))
%o A055932         if k==1 or (min(p)==1 and max(p)==len(p)):
%o A055932             yield k
%o A055932 A055932_list = list(islice(A055932_gen(),40)) # _Chai Wah Wu_, Aug 07 2025
%Y A055932 Cf. A057335 (permuted), A056808, A025487, A007947, A002110, A080404, A034386, A106177, A124829, A124830, A124831, A124833, A080259 (complement), A215366.
%Y A055932 Cf. A005867, A324939, A345974.
%K A055932 easy,nonn
%O A055932 1,2
%A A055932 _Leroy Quet_, Jul 17 2000
%E A055932 Edited by _Daniel Forgues_, Jan 24 2011