This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A055977 #18 Jul 25 2024 03:44:24 %S A055977 1,2,3,5,7,8,9,10,11,13,17,19,23,29,31,37,40,41,43,47,53,59,61,64,67, %T A055977 71,73,75,79,83,89,97,101,103,107,109,113,125,127,128,131,137,139,149, %U A055977 151,157,163,167,173,179,180,181,189,191,193,197,199,211,223,225,227 %N A055977 Numbers k such that Product_{q|k} p(q) divides p(k), where p(k) is number of unrestricted partitions of k and the product is over all distinct primes q that divide k. %H A055977 John Tyler Rascoe, <a href="/A055977/b055977.txt">Table of n, a(n) for n = 1..2000</a> %e A055977 10 is included because p(10) = 42 is divisible by p(2)*p(5) = 2*7 and 2 and 5 are the distinct prime divisors of 10. %o A055977 (Python) %o A055977 from itertools import count, islice %o A055977 from math import prod %o A055977 from sympy.ntheory import npartitions, factorint %o A055977 def a_gen(): %o A055977 for n in count(1): %o A055977 if npartitions(n)%prod([npartitions(i) for i in factorint(n)]) < 1: %o A055977 yield n %o A055977 A055977_list = list(islice(a_gen(), 61)) # _John Tyler Rascoe_, Jul 24 2024 %o A055977 (PARI) isok(k) = my(f=factor(k)); numbpart(k) % prod(i=1, #f~, numbpart(f[i,1])) == 0; \\ _Michel Marcus_, Jul 25 2024 %Y A055977 Cf. A000041, A054411. %K A055977 easy,nonn %O A055977 1,2 %A A055977 _Leroy Quet_, Jul 20 2000 %E A055977 Name and offset edited by _John Tyler Rascoe_, Jul 24 2024