A056009 a(n) = (n^n + 1)/ (n^(2^a) + 1), where 2^a is the highest power of 2 dividing n.
1, 1, 7, 1, 521, 1261, 102943, 1, 38742049, 99009901, 23775972551, 429960961, 21633936185161, 56406126018061, 27368368148803711, 1, 45957792327018709121, 121065871000912423309, 98920982783015679456199
Offset: 1
Examples
The sixth term is (6^6 + 1)/ (6^(2^1) + 1) = 1261, since 2^1 is highest power of 2 dividing 6.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..388
Programs
-
Mathematica
Array[(#^# + 1)/(#^(2^IntegerExponent[#, 2]) + 1) &, 19] (* Michael De Vlieger, Dec 11 2017 *)