cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056034 Numbers k such that k^28 == 1 (mod 29^2).

This page as a plain text file.
%I A056034 #20 Apr 16 2025 21:42:21
%S A056034 1,14,41,60,63,137,190,196,221,236,267,270,374,416,425,467,571,574,
%T A056034 605,620,645,651,704,778,781,800,827,840,842,855,882,901,904,978,1031,
%U A056034 1037,1062,1077,1108,1111,1215,1257,1266,1308,1412,1415,1446,1461,1486,1492
%N A056034 Numbers k such that k^28 == 1 (mod 29^2).
%H A056034 Amiram Eldar, <a href="/A056034/b056034.txt">Table of n, a(n) for n = 1..10000</a>
%H A056034 <a href="/index/Rec#order_29">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,-1).
%F A056034 From _Mike Sheppard_, Feb 20 2025 : (Start)
%F A056034 a(n) = a(n-1) + a(n-28) - a(n-29).
%F A056034 a(n) = a(n-28) + 29^2.
%F A056034 a(n) ~ (29^2/28)*n. (End)
%t A056034 x=29; Select[ Range[ 2000 ], PowerMod[ #, x-1, x^2 ]==1& ]
%o A056034 (PARI) isok(k) = Mod(k, 29^2)^28 == 1; \\ _Michel Marcus_, Apr 10 2025
%Y A056034 Cf. A056021, A056022, A056024, A056025, A056026, A056027, A056028, A056031, A056035.
%Y A056034 Cf. A381319 (general case mod n^2).
%K A056034 nonn,easy
%O A056034 1,2
%A A056034 _Robert G. Wilson v_, Jun 08 2000