A056042 a(n) = n!/(k!)^2, where k is the largest number such that (k!)^2 divides n!.
1, 2, 6, 6, 30, 20, 140, 70, 630, 7, 77, 924, 12012, 3432, 51480, 12870, 218790, 48620, 923780, 184756, 3879876, 705432, 16224936, 2704156, 67603900, 10400600, 280816200, 178296, 5170584, 155117520, 4808643120, 601080390, 19835652870
Offset: 1
Keywords
Examples
E.g. for n=9, 10, 11, 12, a(n)=630, 7, 77, 924 while the corresponding central binomial coefficients are 126, 252, 462, 924 respectively.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
f[n_] := Min[ Select[ Table[ n!/(n - k)!^2, {k, n}], IntegerQ[ # ] &]]; Table[ f[n], {n, 33}] (Robert G. Wilson v)
Comments