This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056048 #16 Feb 16 2025 08:32:43 %S A056048 0,0,0,0,6,2116,291966,23312156,1362515742,65691305652,2792020643502, %T A056048 108871903828732,3995501812110798,140371634250355508, %U A056048 4776934559777356158,158783001150185585628,5186356918189216064574,167203226479257200020084,5337930997910228958536334 %N A056048 Number of 5-antichain covers of a labeled n-set. %D A056048 V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6) %D A056048 V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation. %H A056048 G. C. Greubel, <a href="/A056048/b056048.txt">Table of n, a(n) for n = 0..670</a> %H A056048 K. S. Brown, <a href="http://www.mathpages.com/home/kmath515.htm">Dedekind's problem</a> %H A056048 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Cover.html">Antichain covers</a> %F A056048 a(n) = (1/5!) * (31^n - 20*23^n + 60*19^n + 20*17^n + 10*16^n - 110*15^n - 120*14^n + 150*13^n + 120*12^n - 240*11^n + 20*10^n + 240*9^n + 40*8^n - 205*7^n + 60*6^n - 210*5^n + 210*4^n + 50*3^n - 100*2^n + 24). %t A056048 Table[(1/5!)*(31^n - 20*23^n + 60*19^n + 20*17^n + 10*16^n - 110*15^n - 120*14^n + 150*13^n + 120*12^n - 240*11^n + 20*10^n + 240*9^n + 40*8^n - 205*7^n + 60*6^n - 210*5^n + 210*4^n + 50*3^n - 100*2^n + 24), {n,0,25}] (* _G. C. Greubel_, Oct 07 2017 *) %o A056048 (PARI) for(n=0,25, print1((31^n - 20*23^n + 60*19^n + 20*17^n + 10*16^n - 110*15^n - 120*14^n + 150*13^n + 120*12^n - 240*11^n + 20*10^n + 240*9^n + 40*8^n - 205*7^n + 60*6^n - 210*5^n + 210*4^n + 50*3^n - 100*2^n + 24)/120, ", ")) \\ _G. C. Greubel_, Oct 07 2017 %o A056048 (Magma) [(31^n - 20*23^n + 60*19^n + 20*17^n + 10*16^n - 110*15^n - 120*14^n + 150*13^n + 120*12^n - 240*11^n + 20*10^n + 240*9^n + 40*8^n - 205*7^n + 60*6^n - 210*5^n + 210*4^n + 50*3^n - 100*2^n + 24)/120: n in [0..25]]; // _G. C. Greubel_, Oct 07 2017 %Y A056048 Cf. A051113. %K A056048 nonn %O A056048 0,5 %A A056048 _Vladeta Jovovic_, Goran Kilibarda, Zoran Maksimovic, Jul 25 2000