A056054 a(n) = smallest even number 2m such that value of odd harmonic series Sum_{j=0..m} 1/(2j) is > n.
8, 62, 454, 3348, 24734, 182760, 1350428, 9978382, 73730824, 544801200, 4025566630, 29745137662, 219788490858, 1624029488844, 12000044999386, 88669005690160, 655180257281000, 4841163675961122, 35771629985782052
Offset: 1
Keywords
References
- Calvin C. Clawson, Mathematical Mysteries, The Beauty and Magic of Numbers, Plenum Press, NY and London, 1996, page 64.
Programs
-
Mathematica
s = 0; k = 2; Do[ While[s = N[s + 1/k, 24]; s <= n, k += 2]; Print[k]; k += 2, {n, 1, 12}] (* or assuming that the Mathematica coding in A002387 is correct then *) b[n_] := Module[{k = Floor[2a[2n]]}, If[ EvenQ[k], k, k + 1]]; Table[ b[n], {n, 19}] (* Robert G. Wilson v, Apr 17 2004 *)
Formula
a(n) = 2*A002387(2n).
The next term is approximately the previous term * e^2.
Comments