cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056059 GCD of largest square and squarefree part of central binomial coefficients.

This page as a plain text file.
%I A056059 #31 Nov 24 2022 18:20:06
%S A056059 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,2,3,6,2,1,1,1,3,3,
%T A056059 1,1,1,2,1,1,1,2,1,2,6,3,1,1,1,2,3,6,2,1,1,2,2,1,2,1,1,2,1,1,1,1,1,1,
%U A056059 1,2,1,1,1,2,1,2,2,1,1,1,1,2,3,6,6,3,1,2,2,1,2,1,3,6,1,1,1,2,1,2
%N A056059 GCD of largest square and squarefree part of central binomial coefficients.
%H A056059 Antti Karttunen, <a href="/A056059/b056059.txt">Table of n, a(n) for n = 1..10000</a>
%F A056059 a(n) = A055229(A001405(n)), where A055229(n) = gcd(A008833(n), A007913(n)).
%e A056059 n=14, binomial(14,7) = 3432 = 8*3*11*13. The largest square divisor is 4, squarefree part is 858. So a(14) = gcd(4,858) = 2.
%t A056059 Table[GCD[First@ Select[Reverse@ Divisors@ #, IntegerQ@ Sqrt@ # &], Times @@ Power @@@ Map[{#1, Mod[#2, 2]} & @@ # &, FactorInteger@ #]] &@ Binomial[n, Floor[n/2]], {n, 80}] (* _Michael De Vlieger_, Feb 18 2017, after _Zak Seidov_ at A007913 *)
%o A056059 (PARI)
%o A056059 A001405(n) = binomial(n, n\2);
%o A056059 A055229(n) = { my(c=core(n)); gcd(c, n/c); } \\ _Charles R Greathouse IV_, Nov 20 2012
%o A056059 A056059(n) = A055229(A001405(n)); \\ _Antti Karttunen_, Jul 20 2017
%o A056059 (Python)
%o A056059 from sympy import binomial, gcd
%o A056059 from sympy.ntheory.factor_ import core
%o A056059 def a001405(n): return binomial(n, n//2)
%o A056059 def a055229(n):
%o A056059     c = core(n)
%o A056059     return gcd(c, n//c)
%o A056059 def a(n): return a055229(a001405(n))
%o A056059 print([a(n) for n in range(1, 151)]) # _Indranil Ghosh_, Jul 20 2017
%Y A056059 Cf. A000188, A001405, A007913, A008833, A034974, A046098, A055229, A055231.
%Y A056059 Cf. A056056, A056057, A056058, A056060, A056061.
%Y A056059 A056201 is the cube of this sequence.
%K A056059 nonn
%O A056059 1,14
%A A056059 _Labos Elemer_, Jul 26 2000
%E A056059 Formula clarified by _Antti Karttunen_, Jul 20 2017