This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056059 #31 Nov 24 2022 18:20:06 %S A056059 1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,2,3,6,2,1,1,1,3,3, %T A056059 1,1,1,2,1,1,1,2,1,2,6,3,1,1,1,2,3,6,2,1,1,2,2,1,2,1,1,2,1,1,1,1,1,1, %U A056059 1,2,1,1,1,2,1,2,2,1,1,1,1,2,3,6,6,3,1,2,2,1,2,1,3,6,1,1,1,2,1,2 %N A056059 GCD of largest square and squarefree part of central binomial coefficients. %H A056059 Antti Karttunen, <a href="/A056059/b056059.txt">Table of n, a(n) for n = 1..10000</a> %F A056059 a(n) = A055229(A001405(n)), where A055229(n) = gcd(A008833(n), A007913(n)). %e A056059 n=14, binomial(14,7) = 3432 = 8*3*11*13. The largest square divisor is 4, squarefree part is 858. So a(14) = gcd(4,858) = 2. %t A056059 Table[GCD[First@ Select[Reverse@ Divisors@ #, IntegerQ@ Sqrt@ # &], Times @@ Power @@@ Map[{#1, Mod[#2, 2]} & @@ # &, FactorInteger@ #]] &@ Binomial[n, Floor[n/2]], {n, 80}] (* _Michael De Vlieger_, Feb 18 2017, after _Zak Seidov_ at A007913 *) %o A056059 (PARI) %o A056059 A001405(n) = binomial(n, n\2); %o A056059 A055229(n) = { my(c=core(n)); gcd(c, n/c); } \\ _Charles R Greathouse IV_, Nov 20 2012 %o A056059 A056059(n) = A055229(A001405(n)); \\ _Antti Karttunen_, Jul 20 2017 %o A056059 (Python) %o A056059 from sympy import binomial, gcd %o A056059 from sympy.ntheory.factor_ import core %o A056059 def a001405(n): return binomial(n, n//2) %o A056059 def a055229(n): %o A056059 c = core(n) %o A056059 return gcd(c, n//c) %o A056059 def a(n): return a055229(a001405(n)) %o A056059 print([a(n) for n in range(1, 151)]) # _Indranil Ghosh_, Jul 20 2017 %Y A056059 Cf. A000188, A001405, A007913, A008833, A034974, A046098, A055229, A055231. %Y A056059 Cf. A056056, A056057, A056058, A056060, A056061. %Y A056059 A056201 is the cube of this sequence. %K A056059 nonn %O A056059 1,14 %A A056059 _Labos Elemer_, Jul 26 2000 %E A056059 Formula clarified by _Antti Karttunen_, Jul 20 2017