This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056070 #15 Apr 20 2023 13:05:23 %S A056070 30,2206,56242,766198,7056249,49662920,286860862,1422695104, %T A056070 6246302316,24810260818,90593318410,307833736038,982717917851, %U A056070 2969842897554,8548862507642,23559234462890,62421788882924,159585012804848,394875247007432,948171537489016 %N A056070 Number of 5-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 5 labeled nodes and n hyperedges. %C A056070 T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node. %D A056070 V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6) %D A056070 V. Jovovic and G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation. %H A056070 K. S. Brown, <a href="http://www.mathpages.com/home/kmath515.htm">Dedekind's problem</a> %H A056070 <a href="/index/Rec#order_32">Index entries for linear recurrences with constant coefficients</a>, signature (32, -496, 4960, -35960, 201376, -906192, 3365856, -10518300, 28048800, -64512240, 129024480, -225792840, 347373600, -471435600, 565722720, -601080390, 565722720, -471435600, 347373600, -225792840, 129024480, -64512240, 28048800, -10518300, 3365856, -906192, 201376, -35960, 4960, -496, 32, -1). %F A056070 a(n)=C(n + 31, 31) - 20*C(n + 23, 23) + 60*C(n + 19, 19) + 20*C(n + 17, 17) + 10*C(n + 16, 16) - 110*C(n + 15, 15) - 120*C(n + 14, 14) + 150*C(n + 13, 13) + 120*C(n + 12, 12) - 240*C(n + 11, 11) + 20*C(n + 10, 10) + 240*C(n + 9, 9) + 40*C(n + 8, 8) - 205*C(n + 7, 7) + 60*C(n + 6, 6) - 210*C(n + 5, 5) + 210*C(n + 4, 4) + 50*C(n + 3, 3) - 100*C(n + 2, 2) + 24*C(n + 1, 1). %Y A056070 Cf. A051113 for 5-element (unordered) antichains on a labeled n-element set, A056005. %K A056070 nonn,easy %O A056070 4,1 %A A056070 _Vladeta Jovovic_, Goran Kilibarda, Zoran Maksimovic, Jul 26 2000 %E A056070 More terms from _Sean A. Irvine_, Apr 14 2022