This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056077 #33 May 03 2024 14:25:05 %S A056077 1,2,4,6,10,11,12,16,18,22,23,28,29,30,35,36,39,40,42,44,46,47,52,55, %T A056077 58,59,60,62,66,69,70,71,72,78,79,82,83,88,89,95,96,100,102,104,106, %U A056077 107,108,111,112,119,125,126,130,131,134,136,138,139,143,148,149,150,153 %N A056077 Indices n of terms of sequence A001142, Product_{k=0..n} binomial(n,k), that are divisible by all primes <= n. %C A056077 a(n) + 1 is either a prime or a "mutinous number" (A027854). %H A056077 Michael De Vlieger, <a href="/A056077/b056077.txt">Table of n, a(n) for n = 1..10000</a> %H A056077 Hans Montanus and Ron Westdijk, <a href="https://greenbluemath.nl/wp-content/uploads/2024/03/Cellular-Automation-and-Binomials.pdf">Cellular Automation and Binomials</a>, Green Blue Mathematics (2022), p. 69. %F A056077 Let h(m) = Product(PrimeDivisors(Product_{k=0..m} k^k/k!)). If h(m-1) divides h(m) then m is in this sequence. # _Peter Luschny_, Dec 21 2019 %e A056077 11 is included because Product_{k=0..11} binomial(11, k) is divisible by 2, 3, 5, 7 and 11. %p A056077 isA056077 := proc(n) local radh; radh := proc(n) option remember; %p A056077 mul(k, k = numtheory:-factorset(mul(k^k/factorial(k), k=0..n))) end; %p A056077 type(radh(n)/radh(n-1), integer) end: # isA056077(0) = true. %p A056077 select(isA056077, [$1..153]); # _Peter Luschny_, Dec 21 2019 %t A056077 With[{s = Select[Range@ 154, Function[n, (n/Apply[Power, Last@ #]) > #[[-1, 1]] &@ FactorInteger[n]]]}, -1 + Union[s, Prime@ Range@ PrimePi@ Max@ s]] (* _Michael De Vlieger_, Sep 23 2017 *) %Y A056077 Cf. A001142, A056606, A027854, A002110. %K A056077 easy,nonn %O A056077 1,2 %A A056077 _Leroy Quet_, Jul 26 2000 %E A056077 Extended by _Ray Chandler_, Nov 17 2008