This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056105 #97 Feb 16 2025 08:32:43 %S A056105 1,2,9,22,41,66,97,134,177,226,281,342,409,482,561,646,737,834,937, %T A056105 1046,1161,1282,1409,1542,1681,1826,1977,2134,2297,2466,2641,2822, %U A056105 3009,3202,3401,3606,3817,4034,4257,4486,4721,4962,5209,5462,5721,5986,6257 %N A056105 First spoke of a hexagonal spiral. %C A056105 Also the number of (not necessarily maximal) cliques in the n X n grid graph. - _Eric W. Weisstein_, Nov 29 2017 %H A056105 G. C. Greubel, <a href="/A056105/b056105.txt">Table of n, a(n) for n = 0..5000</a> %H A056105 Henry Bottomley, <a href="/A003215/a003215.gif">Illustration of initial terms</a> %H A056105 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/A2.html">Home page for hexagonal (or triangular) lattice A2</a> %H A056105 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Clique.html">Clique</a> %H A056105 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GridGraph.html">Grid Graph</a> %H A056105 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A056105 a(n) = 3*n^2 - 2*n + 1. %F A056105 a(n) = a(n-1) + 6*n - 5. %F A056105 a(n) = 2*a(n-1) - a(n-2) + 6. %F A056105 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A056105 a(n) = A056106(n) - n = A056107(n) - 2*n. %F A056105 a(n) = A056108(n) - 3*n = A056109(n) - 4*n = A003215(n) - 5*n. %F A056105 A008810(3*n-1) = A056109(-n) = a(n). - _Michael Somos_, Aug 03 2006 %F A056105 G.f.: (1-x+6*x^2)/(1-3*x+3*x^2-x^3). - _Colin Barker_, Jan 04 2012 %F A056105 From _Robert G. Wilson v_, Jul 05 2014: (Start) %F A056105 Each of the 6 primary spokes or rays has a generating formula as stated here: %F A056105 1st: 90 degrees A056105 3n^2 - 2n + 1 %F A056105 2nd: 30 degrees A056106 3n^2 - n + 1 %F A056105 3rd: 330 degrees A056107 3n^2 + 1 %F A056105 4th: 270 degrees A056108 3n^2 + n + 1 %F A056105 5th: 210 degrees A056109 3n^2 + 2n + 1 %F A056105 6th: 150 degrees A003215 3n^2 + 3n + 1 %F A056105 Each of the 6 secondary spokes or rays has a generating formula as stated here: %F A056105 1st: 60 degrees 12n^2 - 27n + 16 %F A056105 2nd: 360 degrees 12n^2 - 25n + 14 %F A056105 3rd: 300 degrees 12n^2 - 23n + 12 %F A056105 4th: 240 degrees 12n^2 - 21n + 10 %F A056105 5th: 180 degrees 12n^2 - 19n + 8 %F A056105 6th: 120 degrees 12n^2 - 17n + 6 = A033577(n+1) %F A056105 (End) %F A056105 a(n) = 1 + A000567(n). - _Omar E. Pol_, Apr 26 2017 %F A056105 a(n) = A000290(n-1) + 2*A000290(n), n >= 1. - _J. M. Bergot_, Mar 03 2018 %F A056105 E.g.f.: (1 + x + 3*x^2)*exp(x). - _G. C. Greubel_, Dec 02 2018 %e A056105 The spiral begins: %e A056105 49--48--47--46--45 %e A056105 / \ %e A056105 50 28--27--26--25 44 %e A056105 / / \ \ %e A056105 51 29 13--12--11 24 43 %e A056105 / / / \ \ \ %e A056105 52 30 14 4---3 10 23 42 67 %e A056105 / / / / \ \ \ \ \ %e A056105 53 31 15 5 1===2===9==22==41==66==> %e A056105 \ \ \ \ / / / / %e A056105 54 32 16 6---7---8 21 40 65 %e A056105 \ \ \ / / / %e A056105 55 33 17--18--19--20 39 64 %e A056105 \ \ / / %e A056105 56 34--35--36--37--38 63 %e A056105 \ / %e A056105 57--58--59--60--61--62 %p A056105 A056105:=n->3*n^2 - 2*n + 1: seq(A056105(n), n=0..50); # _Wesley Ivan Hurt_, Jul 06 2014 %t A056105 LinearRecurrence[{3, -3, 1}, {1, 2, 9}, 50] (* _Harvey P. Dale_, Nov 02 2011 *) %t A056105 Table[3 n^2 - 2 n + 1, {n, 0, 20}] (* _Eric W. Weisstein_, Nov 29 2017 *) %t A056105 CoefficientList[Series[(-1 + x - 6 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* _Eric W. Weisstein_, Nov 29 2017 *) %o A056105 (PARI) a(n)=3*n^2-2*n+1 /* _Michael Somos_, Aug 03 2006 */ %o A056105 (Magma) [3*n^2-2*n+1: n in [0..50]]; // _Wesley Ivan Hurt_, Jul 06 2014 %o A056105 (Sage) [3*n^2-2*n+1 for n in range(50)] # _G. C. Greubel_, Dec 02 2018 %o A056105 (GAP) List([0..50], n -> 3*n^2-2*n+1); # _G. C. Greubel_, Dec 02 2018 %Y A056105 Cf. A285792 (prime terms), A113519 (semiprime terms). %Y A056105 Other spokes: A003215, A056106, A056107, A056108, A056109. %Y A056105 Other spirals: A054552. %Y A056105 Cf. A000290, A000567, A008810, A033577. %K A056105 easy,nonn %O A056105 0,2 %A A056105 _Henry Bottomley_, Jun 09 2000