This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056115 #55 Sep 08 2022 08:45:01 %S A056115 0,6,13,21,30,40,51,63,76,90,105,121,138,156,175,195,216,238,261,285, %T A056115 310,336,363,391,420,450,481,513,546,580,615,651,688,726,765,805,846, %U A056115 888,931,975,1020,1066,1113,1161,1210,1260,1311,1363,1416,1470,1525 %N A056115 a(n) = n*(n+11)/2. %D A056115 A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. %H A056115 G. C. Greubel, <a href="/A056115/b056115.txt">Table of n, a(n) for n = 0..1000</a> %H A056115 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A056115 G.f.: x*(6-5*x)/(1-x)^3. %F A056115 a(n) = A000096(n) + 4*A001477(n) = A056000(n) + A001477(n) = A056119(n) - A001477(n). - _Zerinvary Lajos_, Oct 01 2006 %F A056115 a(n) = A126890(n,5) for n>4. - _Reinhard Zumkeller_, Dec 30 2006 %F A056115 Equals A119412/2. - _Zerinvary Lajos_, Feb 12 2007 %F A056115 If we define f(n,i,a) = Sum_{k=0..n-i} ( binomial(n,k)*stirling1(n-k,i) *Product_{j=0..k-1} (-a-j) ), then a(n) = -f(n,n-1,6), for n>=1. - _Milan Janjic_, Dec 20 2008 %F A056115 a(n) = a(n-1) + n + 5 (with a(0)=0). - _Vincenzo Librandi_, Aug 07 2010 %F A056115 Sum_{n>=1} 1/a(n) = 83711/152460. - _R. J. Mathar_, Jul 14 2012 %F A056115 a(n) = 6*n - floor(n/2) + floor(n^2/2). - _Wesley Ivan Hurt_, Jun 15 2013 %F A056115 E.g.f.: x*(12 + x)*exp(x)/2. - _G. C. Greubel_, Jan 18 2020 %F A056115 Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/11 - 20417/152460. - _Amiram Eldar_, Jan 10 2021 %t A056115 ((2*Range[0,50]+11)^2 -11^2)/8 (* _G. C. Greubel_, Jan 18 2020 *) %o A056115 (PARI) a(n)=n*(n+11)/2; \\ _Joerg Arndt_, Oct 25 2014 %o A056115 (Magma) [n*(n+11)/2: n in [0..50]]; // _G. C. Greubel_, Jan 18 2020 %o A056115 (Sage) [n*(n+11)/2 for n in (0..50)] # _G. C. Greubel_, Jan 18 2020 %o A056115 (GAP) List([0..50], n-> n*(n+11)/2 ); # _G. C. Greubel_, Jan 18 2020 %Y A056115 Cf. A000096, A001477, A055999, A056000, A056119. %Y A056115 Third column of Pascal (1, 6) triangle A096956. %K A056115 easy,nonn %O A056115 0,2 %A A056115 _Barry E. Williams_, Jul 04 2000