This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056125 #13 Sep 08 2022 08:45:01 %S A056125 1,18,126,570,1980,5742,14586,33462,70785,140140,262548,469404,806208, %T A056125 1337220,2151180,3368244,5148297,7700814,11296450,16280550,23088780, %U A056125 32265090,44482230,60565050,81516825,108548856,143113608,186941656 %N A056125 a(n) = (5*n + 4)*binomial(n+7,7)/4. %H A056125 G. C. Greubel, <a href="/A056125/b056125.txt">Table of n, a(n) for n = 0..1000</a> %H A056125 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (9,-36,84,-126,126,-84,36,-9,1). %F A056125 G.f.: (1+9*x)/(1-x)^9. %F A056125 a(0)=1, a(1)=18, a(2)=126, a(3)=570, a(4)=1980, a(5)=5742, a(6)=14586, a(7)=33462, a(8)=70785, a(n) = 9*a(n-1) -36*a(n-2) +84*a(n-3) -126*a(n-4) + 126*a(n-5) -84*a(n-6) +36*a(n-7) -9*a(n-8) +a(n-9). - _Harvey P. Dale_, Jan 18 2013 %F A056125 From _G. C. Greubel_, Jan 19 2020: (Start) %F A056125 a(n) = 10*binomial(n+8,8) - 9*binomial(n+7,7). %F A056125 E.g.f.: (20160 + 342720*x + 917280*x^2 + 823200*x^3 + 323400*x^4 + 62328*x^5 + 6076*x^6 + 284*x^7 + 5*x^8)*exp(x)/20160. (End) %p A056125 seq( (5*n+4)*binomial(n+7,7)/4, n=0..30); # _G. C. Greubel_, Jan 19 2020 %t A056125 Table[((5n+4)Binomial[n+7,7])/4,{n,0,30}] (* or *) LinearRecurrence[{9,-36,84, -126,126,-84,36,-9,1},{1,18,126,570,1980,5742,14586,33462,70785},30] (* _Harvey P. Dale_, Jan 18 2013 *) %o A056125 (PARI) vector(31, n, (5*n-1)*binomial(n+6,7)/4 ) \\ _G. C. Greubel_, Jan 19 2020 %o A056125 (Magma) [(5*n+4)*Binomial(n+7,7)/4: n in [0..30]]; // _G. C. Greubel_, Jan 19 2020 %o A056125 (Sage) [(5*n+4)*binomial(n+7,7)/4 for n in (0..30)] # _G. C. Greubel_, Jan 19 2020 %o A056125 (GAP) List([0..30], n-> (5*n+4)*Binomial(n+7,7)/4 ); # _G. C. Greubel_, Jan 19 2020 %Y A056125 Cf. A052254. %Y A056125 Cf. A093645 ((10, 1) Pascal, column m=8). %Y A056125 Partial sums of A052254. %K A056125 easy,nonn %O A056125 0,2 %A A056125 _Barry E. Williams_, Jul 07 2000