This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056126 #47 Sep 08 2022 08:45:01 %S A056126 0,9,19,30,42,55,69,84,100,117,135,154,174,195,217,240,264,289,315, %T A056126 342,370,399,429,460,492,525,559,594,630,667,705,744,784,825,867,910, %U A056126 954,999,1045,1092,1140,1189,1239,1290,1342,1395,1449,1504,1560,1617,1675 %N A056126 a(n) = n*(n + 17)/2. %H A056126 G. C. Greubel, <a href="/A056126/b056126.txt">Table of n, a(n) for n = 0..1000</a> %H A056126 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A056126 G.f.: x*(9-8*x)/(1-x)^3. %F A056126 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A056126 a(n) = A126890(n,8) for n>7. - _Reinhard Zumkeller_, Dec 30 2006 %F A056126 If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*stirling1(n-k,i)* Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,9), for n>=1. - _Milan Janjic_, Dec 20 2008 %F A056126 a(n) = a(n-1) + n + 8 (with a(0)=0). - _Vincenzo Librandi_, Aug 07 2010 %F A056126 a(n) = 9*n - floor(n/2) + floor(n^2/2). - _Wesley Ivan Hurt_, Jun 15 2013 %F A056126 E.g.f.: x*(18 + x)*exp(x)/2. - _G. C. Greubel_, Jan 19 2020 %F A056126 From _Amiram Eldar_, Jan 10 2021: (Start) %F A056126 Sum_{n>=1} 1/a(n) = 2*A001008(17)/(17*A002805(17)) = 42142223/104144040. %F A056126 Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/17 - 1768477/20828808. (End) %p A056126 seq( n*(n+17)/2, n=0..50); # _G. C. Greubel_, Jan 19 2020 %t A056126 Table[n(n+17)/2,{n,0,50}] (* _Harvey P. Dale_, Apr 25 2011 *) %o A056126 (PARI) a(n)=n*(n+17)/2 \\ _Charles R Greathouse IV_, Sep 24 2015 %o A056126 (Magma) [n*(n+17)/2: n in [0..50]]; // _G. C. Greubel_, Jan 19 2020 %o A056126 (Sage) [n*(n+17)/2 for n in (0..50)] # _G. C. Greubel_, Jan 19 2020 %o A056126 (GAP) List([0..50], n-> n*(n+17)/2 ); # _G. C. Greubel_, Jan 19 2020 %Y A056126 Cf. A000096, A001477, A051942, A056000, A056121. %Y A056126 Cf. A001008, A002805, A098849, A120071, A132760, A132761, A132765. %K A056126 easy,nonn %O A056126 0,2 %A A056126 _Barry E. Williams_, Jul 07 2000