This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056163 #11 Feb 16 2025 08:32:43 %S A056163 2,3,5,11,120,191297 %N A056163 Number of ordered antichains on an unlabeled n-set; labeled T_1-hypergraphs with n hyperedges. %C A056163 A T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes has a hyperedge containing one but not the other node. %D A056163 V. Jovovic and G. Kilibarda, On the number of Boolean functions in the Post classes F^{mu}_8, Diskretnaya Matematika, 11 (1999), no. 4, 127-138 (translated in Discrete Mathematics and Applications, 9, (1999), no. 6) %D A056163 V. Jovovic, G. Kilibarda, On enumeration of the class of all monotone Boolean functions, in preparation. %H A056163 K. S. Brown, <a href="http://www.mathpages.com/home/kmath515.htm">Dedekind's problem</a> %H A056163 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Cover.html">Antichain covers</a> %F A056163 a(n)=Sum_{k=0..C(n, floor(n/2))}b(k, n) where b(k, n) is the number of k-element ordered antichains on an unlabeled n-set. %e A056163 a(1)=1+2=3; a(2)=1+3+1=5; a(3)=1+4+4+2=11; a(4)=1+5+10+19+25+30+30=120; a(5)=1+6+20+90+454+2206+8340+20580+38640+60480+60480=191297. %e A056163 There are 11 ordered antichains on an unlabeled 3-set: 0, (0), ({1}), ({1,2}), ({1,2,3}), ({1},{2}), ({1},{2,3}), ({2,3},{1}), ({1,2},{1,3}), ({1},{2},{3}), ({1,2},{1,3},{2,3}). %Y A056163 Cf. A000372 for (unordered) antichains on a labeled n-set, A056005, A056069-A056071, A056073, A056046-A056049, A056052, A056101, A056104, A051112-A051118. %K A056163 hard,more,nonn %O A056163 0,1 %A A056163 _Vladeta Jovovic_, Goran Kilibarda, Jul 31 2000