cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A056175 Number of nonunitary prime divisors of the central binomial coefficient C(n, floor(n/2)) (A001405).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 2, 3, 3, 2, 2, 1, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 3, 3, 2, 3, 3, 3, 3, 3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 2, 0, 1, 1, 1, 2, 2, 3, 3, 1, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 4, 3, 3, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Labos Elemer, Jul 27 2000

Keywords

Comments

Number of prime divisors of the largest square dividing A001405(n). (A prime divisor is nonunitary iff its exponent exceeds 1.)

Examples

			For n=10, binomial(10, 5) = 252 = 2*2*3*3*7 has 3 prime divisors of which only one, p=7, is unitary, while 2 and 3 are not. So a(10)=2.
For n=256, binomial(256, 128) also has only 2 prime divisors (3 and 13) whose exponents exceed 1 (4 and 2, respectively), thus a(256)=2.
		

Crossrefs

Programs

  • Mathematica
    Table[Count[FactorInteger[Binomial[n, Floor[n/2]]][[All, -1]], e_ /; e > 1], {n, 105}] (* Michael De Vlieger, Mar 05 2017 *)
  • PARI
    a(n)=omega(core(binomial(n, n\2), 1)[2]) \\ Charles R Greathouse IV, Mar 09 2017

Formula

a(n) = A001221(A000188(A001405(n))).
a(n) = A001221(A056057(n)).

Extensions

Edited by Jon E. Schoenfield, Mar 05 2017

A064032 Product of unitary divisors of binomial(n, floor(n/2)).

Original entry on oeis.org

1, 2, 3, 36, 100, 400, 1225, 24010000, 252047376, 4032758016, 2075562447064149770496, 531343986448422341246976, 75186222935463997063888896, 19247673071478783248355557376, 2940278105018015412903875390625, 566574142904620264536665169363475932852029446342410000000000000000
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n^(2^(PrimeNu[n]-1)); Table[f[Binomial[n, Floor[n/2]]], {n, 1, 20}] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    a(n) = apply(x -> x^(2^(omega(x)-1)), binomial(n, n\2)); \\ Amiram Eldar, Jul 22 2024

Formula

a(n) = A061537(A001405(n)). - Amiram Eldar, Jul 22 2024

Extensions

a(15)-a(16) from Amiram Eldar, Jul 22 2024

A064033 Product of non-unitary divisors of binomial(n, floor(n/2)) or a(n) = 1 if all divisors are unitary. See A046098.

Original entry on oeis.org

1, 1, 1, 1, 1, 20, 1, 1, 15876, 1016255020032, 1, 728933458176, 8670998958336, 19247673071478783248355557376, 1714723915100625, 752711194884611945703392100000000, 1, 31226235883841773375939805209600000000, 1, 1357651828905889565182743230460164655087616
Offset: 1

Views

Author

Labos Elemer, Sep 13 2001

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n^((DivisorSigma[0, n] - 2^PrimeNu[n]) / 2); Table[f[Binomial[n, Floor[n/2]]], {n, 1, 20}] (* Amiram Eldar, Jul 22 2024 *)
  • PARI
    a(n) = apply(x -> x^((numdiv(x) - 2^omega(x))/2), binomial(n, n\2)); \\ Amiram Eldar, Jul 22 2024

Formula

a(n) = A061538(A001405(n)).

Extensions

a(18)-a(20) from Amiram Eldar, Jul 22 2024
Showing 1-3 of 3 results.