This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056189 #16 Sep 06 2023 21:10:51 %S A056189 1,2,2,8,2,52,2,128,170,764,2,2488,2,11624,16928,32768,2,181324,2, %T A056189 555296,931610,2802584,2,11007664,6643782,43955032,44739242,136585808, %U A056189 2,720895864,2,2147483648,3250384970,10923540812,11517062218 %N A056189 a(n) = 2^n - A056188(n). %C A056189 For n > 1, a(n) is the number of binary words of length n such that the numbers of 0's and 1's are not coprime. - _Bartlomiej Pawlik_, Sep 03 2023 %F A056189 a(n) = 2^n-Sum{binomial[n, k]; k>0, GCD[n, k]=1}, for n>1. %F A056189 a(n) = 2 for primes. %e A056189 For n=6, a(6)=52 because the sum of coefficients is restricted only to k=1,5 so a(6)=64-6-6. %o A056189 (PARI) a(n) = if (n==1, 1, 2^n - sum(k=0, n, if (gcd(n,k) == 1, binomial(n,k)))); \\ _Michel Marcus_, Mar 22 2020 %Y A056189 Cf. A056045, A056188. %K A056189 nonn %O A056189 1,2 %A A056189 _Labos Elemer_, Aug 02 2000