This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056210 #22 Jun 29 2021 05:54:32 %S A056210 11,251,1061,1451,1901,1931,2381,3181,3491,3851,4621,4861,5261,6101, %T A056210 6491,6581,6781,7331,8101,9941,10331,10771,11251,11261,11411,12301, %U A056210 14051,14221,14411,15091,15131,16061,16141,16301,16651,16811,16901 %N A056210 Primes p whose period of reciprocal equals (p-1)/5. %C A056210 Cyclic numbers of the fifth degree (or fifth order): the reciprocals of these numbers belong to one of five different cycles. Each cycle has the (number minus 1)/5 digits. %C A056210 From _Robert Israel_, Apr 02 2018: (Start) %C A056210 Primes p such that A002371(A000720(p)) = (p-1)/5. %C A056210 All terms == 1 (mod 10). (End) %H A056210 Amiram Eldar, <a href="/A056210/b056210.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from T. D. Noe) %H A056210 <a href="/index/1#1overn">Index entries for sequences related to decimal expansion of 1/n</a> %p A056210 select(t -> isprime(t) and numtheory:-order(10, t) = (t-1)/5, [seq(t,t=11..17000,10)]); # _Robert Israel_, Apr 02 2018 %t A056210 f[n_Integer] := Block[{ds = Divisors[n - 1]}, (n - 1)/Take[ ds, Position[ PowerMod[ 10, ds, n], 1] [[1, 1]]] [[ -1]]]; Select[ Prime[ Range[4, 2000]], f[ # ] == 5 &] %Y A056210 Cf. A000720, A001913, A002371, A097443, A055628, A056157, A056211, A056212, A056213, A056214, A056215, A056216, A056217, A098680. %K A056210 nonn,base %O A056210 1,1 %A A056210 _Robert G. Wilson v_, Aug 02 2000 %E A056210 Entry revised by _N. J. A. Sloane_, Apr 30 2007