This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056242 #70 Aug 15 2024 03:34:47 %S A056242 1,1,2,1,5,4,1,9,16,8,1,14,41,44,16,1,20,85,146,112,32,1,27,155,377, %T A056242 456,272,64,1,35,259,833,1408,1312,640,128,1,44,406,1652,3649,4712, %U A056242 3568,1472,256,1,54,606,3024,8361,14002,14608,9312,3328,512,1,65,870,5202 %N A056242 Triangle read by rows: T(n,k) = number of k-part order-consecutive partition of {1,2,...,n} (1 <= k <= n). %C A056242 Generalized Riordan array (1/(1-x), x/(1-x) + x*dif(x/1-x),x)). - _Paul Barry_, Dec 26 2007 %C A056242 Reversal of A117317. - _Philippe Deléham_, Feb 11 2012 %C A056242 Essentially given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Feb 11 2012 %C A056242 This sequence is given in the Strehl presentation with the o.g.f. (1-z)/[1-2(1+t)z+(1+t)z^2], with offset 0, along with a recursion relation, a combinatorial interpretation, and relations to Hermite and Laguerre polynomials. Note that the o.g.f. is related to that of A049310. - _Tom Copeland_, Jan 08 2017 %C A056242 From _Gus Wiseman_, Mar 06 2020: (Start) %C A056242 T(n,k) is also the number of unimodal length-n sequences covering an initial interval of positive integers with maximum part k, where a sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. For example, the sequences counted by row n = 4 are: %C A056242 (1111) (1112) (1123) (1234) %C A056242 (1121) (1132) (1243) %C A056242 (1122) (1223) (1342) %C A056242 (1211) (1231) (1432) %C A056242 (1221) (1232) (2341) %C A056242 (1222) (1233) (2431) %C A056242 (2111) (1321) (3421) %C A056242 (2211) (1322) (4321) %C A056242 (2221) (1332) %C A056242 (2231) %C A056242 (2311) %C A056242 (2321) %C A056242 (2331) %C A056242 (3211) %C A056242 (3221) %C A056242 (3321) %C A056242 (End) %C A056242 T(n,k) is the number of hexagonal directed-column convex polyominoes of area n with k columns (see Baril et al. at page 9). - _Stefano Spezia_, Oct 14 2023 %H A056242 Reinhard Zumkeller, <a href="/A056242/b056242.txt">Rows n = 1..125 of table, flattened</a> %H A056242 Jean-Luc Baril, José L. Ramírez, and Fabio A. Velandia, <a href="http://jl.baril.u-bourgogne.fr/hexbij.pdf">Bijections between Directed-Column Convex Polyominoes and Restricted Compositions</a>, September 29, 2023. %H A056242 Tyler Clark and Tom Richmond, <a href="http://people.wku.edu/tom.richmond/Papers/CountConvexTopsFTOsets.pdf">The Number of Convex Topologies on a Finite Totally Ordered Set</a>, 2013, Involve, Vol. 8 (2015), No. 1, 25-32. %H A056242 F. K. Hwang and C. L. Mallows, <a href="http://dx.doi.org/10.1016/0097-3165(95)90097-7">Enumerating nested and consecutive partitions</a>, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333. %H A056242 Finn Bjarne Jost, <a href="https://arxiv.org/abs/2307.15825">Tautological Intersection Numbers and Order-Consecutive Partition Sequences</a>, arXiv:2307.15825 [math.CO], 2023. See p. 9. %H A056242 V. Strehl, <a href="http://www.emis.de/journals/SLC/wpapers/s71vortrag/strehl.pdf">Combinatoire rétrospective et créative</a>, an on-line presentation, slide 36, SLC 71, Bertinoro,, September 18, 2013. %H A056242 Volker Strehl, <a href="http://www.mat.univie.ac.at/~slc/wpapers/s76strehl.html">Lacunary Laguerre Series from a Combinatorial Perspective</a>, Séminaire Lotharingien de Combinatoire, B76c (2017). %F A056242 The Hwang and Mallows reference gives explicit formulas. %F A056242 T(n,k) = Sum_{j=0..k-1} (-1)^(k-1-j)*binomial(k-1, j)*binomial(n+2j-1, 2j) (1<=k<=n); this is formula (11) in the Huang and Mallows reference. %F A056242 T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(1,1) = 1, T(2,1) = 1, T(2,2) = 2. - _Philippe Deléham_, Feb 11 2012 %F A056242 G.f.: -(-1+x)*x*y/(1-2*x-2*x*y+x^2*y+x^2). - _R. J. Mathar_, Aug 11 2015 %e A056242 Triangle begins: %e A056242 1; %e A056242 1, 2; %e A056242 1, 5, 4; %e A056242 1, 9, 16, 8; %e A056242 1, 14, 41, 44, 16; %e A056242 1, 20, 85, 146, 112, 32; %e A056242 1, 27, 155, 377, 456, 272, 64; %e A056242 1, 35, 259, 833, 1408, 1312, 640, 128; %e A056242 1, 44, 406, 1652, 3649, 4712, 3568, 1472, 256; %e A056242 T(3,2)=5 because we have {1}{23}, {23}{1}, {12}{3}, {3}{12} and {2}{13}. %e A056242 Triangle (1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, 0, 0, 0, ...) begins: %e A056242 1; %e A056242 1, 0; %e A056242 1, 2, 0; %e A056242 1, 5, 4, 0; %e A056242 1, 9, 16, 8, 0; %e A056242 1, 14, 41, 44, 16, 0; %e A056242 1, 20, 85, 146, 112, 32, 0; %e A056242 1, 27, 155, 377, 456, 272, 64, 0; %p A056242 T:=proc(n,k) if k=1 then 1 elif k<=n then sum((-1)^(k-1-j)*binomial(k-1,j)*binomial(n+2*j-1,2*j),j=0..k-1) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..12); %t A056242 rows = 11; t[n_, k_] := (-1)^(k+1)*HypergeometricPFQ[{1-k, (n+1)/2, n/2}, {1/2, 1}, 1]; Flatten[ Table[ t[n, k], {n, 1, rows}, {k, 1, n}]](* _Jean-François Alcover_, Nov 17 2011 *) %o A056242 (Haskell) %o A056242 a056242 n k = a056242_tabl !! (n-1)!! (k-1) %o A056242 a056242_row n = a056242_tabl !! (n-1) %o A056242 a056242_tabl = [1] : [1,2] : f [1] [1,2] where %o A056242 f us vs = ws : f vs ws where %o A056242 ws = zipWith (-) (map (* 2) $ zipWith (+) ([0] ++ vs) (vs ++ [0])) %o A056242 (zipWith (+) ([0] ++ us ++ [0]) (us ++ [0,0])) %o A056242 -- _Reinhard Zumkeller_, May 08 2014 %Y A056242 Row sums are A007052. %Y A056242 Column k = n - 1 is A053220. %Y A056242 Ordered set-partitions are A000670. %Y A056242 Cf. A001523, A049310, A072704, A084938, A097805, A117317, A227038, A328509, A332294, A332673, A332724, A332872. %K A056242 nonn,tabl,easy,nice %O A056242 1,3 %A A056242 _Colin Mallows_, Aug 23 2000