cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A056246 Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 41 for n > 0.

This page as a plain text file.
%I A056246 #21 Jan 17 2019 13:44:05
%S A056246 0,1,3,19,31,399,561,7015,37683
%N A056246 Indices of primes in sequence defined by A(0) = 11, A(n) = 10*A(n-1) + 41 for n > 0.
%C A056246 Numbers n such that (140*10^n - 41)/9 is a prime.
%C A056246 Numbers n such that digit 1 followed by n >= 0 occurrences of digit 5 followed by digit 1 is a prime.
%C A056246 Numbers corresponding to terms <= 561 are certified primes.
%D A056246 Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
%H A056246 Patrick De Geest, <a href="http://www.worldofnumbers.com/deplat.htm#pdp151">PDP Reference Table - 151</a>.
%H A056246 Makoto Kamada, <a href="https://stdkmd.net/nrr/1/15551.htm#prime">Prime numbers of the form 155...551</a>.
%H A056246 <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.
%F A056246 a(n) = A082699(n-1) - 2 for n > 1.
%e A056246 151 is a prime, hence 1 is a term.
%t A056246 Select[Range[0, 2000], PrimeQ[(140 10^# - 41) / 9] &] (* _Vincenzo Librandi_, Nov 03 2014 *)
%o A056246 (PARI) a=11;for(n=0,1500,if(isprime(a),print1(n,","));a=10*a+41)
%o A056246 (PARI) for(n=0,1500,if(isprime((140*10^n-41)/9),print1(n,",")))
%Y A056246 Cf. A000533, A002275, A068646, A082699.
%K A056246 nonn,hard
%O A056246 1,3
%A A056246 _Robert G. Wilson v_, Aug 18 2000
%E A056246 Additional comments from _Klaus Brockhaus_ and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 28 2004
%E A056246 Edited by _N. J. A. Sloane_, Jun 15 2007
%E A056246 More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
%E A056246 Added and updated a link, by _Patrick De Geest_, Nov 02 2014
%E A056246 Edited by _Ray Chandler_, Nov 04 2014