This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056285 #24 Sep 28 2018 10:06:06 %S A056285 0,0,0,0,24,300,2400,15750,92680,510312,2691600,13794150,69309240, %T A056285 343501500,1686135376,8221437000,39901776360,193054016840, %U A056285 932142850800,4495236798162,21664357535320,104388120866100,503044634004000,2425003924383900,11696087875731624 %N A056285 Number of n-bead necklaces with exactly five different colored beads. %C A056285 Turning over the necklace is not allowed. %D A056285 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2] %H A056285 Alois P. Heinz, <a href="/A056285/b056285.txt">Table of n, a(n) for n = 1..1000</a> %F A056285 a(n) = A001869(n) - 5*A001868(n) + 10*A001867(n) - 10*A000031(n) + 5. %F A056285 From _Robert A. Russell_, Sep 26 2018: (Start) %F A056285 a(n) = (k!/n) Sum_{d|n} phi(d) S2(n/d,k), where k=5 is the number of colors and S2 is the Stirling subset number A008277. %F A056285 G.f.: -Sum_{d>0} (phi(d)/d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=5 is the number of colors. (End) %e A056285 For n=5, the 24 necklaces are A followed by the 24 permutations of BCDE. %t A056285 k=5; Table[k!DivisorSum[n,EulerPhi[#]StirlingS2[n/#,k]&]/n,{n,1,30}] (* _Robert A. Russell_, Sep 26 2018 *) %o A056285 (PARI) a(n) = my(k=5); k!*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2))/n; \\ _Michel Marcus_, Sep 27 2018 %Y A056285 Cf. A000031, A001867, A001868, A001869, A008277. %Y A056285 Column k=5 of A087854. %K A056285 nonn %O A056285 1,5 %A A056285 _Marks R. Nester_