This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056303 #23 Aug 22 2017 20:53:08 %S A056303 0,1,1,2,3,5,9,16,28,51,93,170,315,585,1091,2048,3855,7280,13797, %T A056303 26214,49929,95325,182361,349520,671088,1290555,2485504,4793490, %U A056303 9256395,17895679,34636833,67108864,130150493,252645135,490853403,954437120,1857283155 %N A056303 Number of primitive (period n) n-bead necklace structures using exactly two different colored beads. %C A056303 Turning over the necklace is not allowed. Colors may be permuted without changing the necklace structure. %C A056303 Identical to A000048 for n>1. %C A056303 Number of binary Lyndon words of length n with an odd number of zeros. - _Joerg Arndt_, Oct 26 2015 %D A056303 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2] %F A056303 a(n) = Sum mu(d)*A056295(n/d) where d divides n. %F A056303 a(n) = A000048(n) - A000007(n-1). %o A056303 (PARI) vector(100, n, sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d)))/(2*n)-!(n-1)) \\ _Altug Alkan_, Oct 26 2015 %o A056303 (Python) %o A056303 from sympy import divisors, mobius %o A056303 def a000048(n): return 1 if n<1 else sum([mobius(d)*2**(n/d) for d in divisors(n) if d%2 == 1])/(2*n) %o A056303 def a(n): return a000048(n) - 0**(n - 1) # _Indranil Ghosh_, Apr 28 2017 %Y A056303 Column 2 of A107424. %Y A056303 Cf. A000007, A000048, A001037, A056295. %K A056303 nonn %O A056303 1,4 %A A056303 _Marks R. Nester_