This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056341 #25 Sep 28 2018 10:02:13 %S A056341 6,21,56,231,888,4291,20646,107331,563786,3037314,16514106,90782986, %T A056341 502474356,2799220041,15673673176,88162676511,497847963696, %U A056341 2821127825971,16035812864946,91404068329560 %N A056341 Number of bracelets of length n using a maximum of six different colored beads. %C A056341 Turning over will not create a new bracelet. %D A056341 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.] %F A056341 a(n) = Sum_{d|n} phi(d)*6^(n/d)/(2*n); %F A056341 a(n) = 6^((n+1)/2)/2 for n odd, %F A056341 (7/4)*6^(n/2) for n even. %F A056341 G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 6*x^n)/n + (1+6*x+15*x^2)/(1-6*x^2))/2. - _Herbert Kociemba_, Nov 02 2016 %e A056341 For n=2, the 21 bracelets are AA, AB, AC, AD, AE, AF, BB, BC, BD, BE, BF, CC, CD, CE, CF, DD, DE, DF, EE, EF, and FF. - _Robert A. Russell_, Sep 24 2018 %t A056341 mx=40;CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-6*x^n]/n,{n,mx}]+(1+6 x+15 x^2)/(1-6 x^2))/2,{x,0,mx}],x] (* _Herbert Kociemba_, Nov 02 2016 *) %t A056341 k=6; Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) + (k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}] (* _Robert A. Russell_, Sep 24 2018 *) %Y A056341 Cf. A000029, A054625. %Y A056341 Cf. a(n) = A081720(n,6), n >= 6. - _Wolfdieter Lang_, Jun 03 2012 %Y A056341 Column 6 of A051137. %Y A056341 Equals (A054625 + A056488) / 2 = A054625 - A278642 = A278642 + A056488. %K A056341 nonn %O A056341 1,1 %A A056341 _Marks R. Nester_