This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A056347 #15 Aug 22 2017 20:53:09 %S A056347 6,15,50,210,882,4220,20640,107100,563730,3036411,16514100,90778485, %T A056347 502474350,2799199380,15673672238,88162569180,497847963690, %U A056347 2821127257950,16035812864940,91404065292036 %N A056347 Number of primitive (period n) bracelets using a maximum of six different colored beads. %C A056347 Turning over will not create a new bracelet. %D A056347 M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2] %F A056347 sum mu(d)*A056341(n/d) where d|n. %F A056347 From _Herbert Kociemba_, Nov 28 2016: (Start) %F A056347 More generally, gf(k) is the g.f. for the number of bracelets with primitive period n and beads of k colors. %F A056347 gf(k): Sum_{n>=1} mu(n)*( -log(1-k*x^n)/n + Sum_{i=0..2} binomial(k,i)x^(n*i)/(1-k*x^(2*n)) )/2. (End) %t A056347 mx=40;gf[x_,k_]:=Sum[ MoebiusMu[n]*(-Log[1-k*x^n]/n+Sum[Binomial[k,i]x^(n i),{i,0,2}]/( 1-k x^(2n)))/2,{n,mx}]; CoefficientList[Series[gf[x,6],{x,0,mx}],x] (* _Herbert Kociemba_, Nov 28 2016 *) %Y A056347 Column 6 of A276550. %Y A056347 Cf. A032164. %K A056347 nonn %O A056347 1,1 %A A056347 _Marks R. Nester_